test_specialization.py 17.3 KB
Newer Older
1
2
import numpy as np
import scipy.sparse as sp
3
4
import dgl
import dgl.function as fn
5
import backend as F
6

Minjie Wang's avatar
Minjie Wang committed
7
8
D = 5

9
def generate_graph():
10
    g = dgl.DGLGraph()
Minjie Wang's avatar
Minjie Wang committed
11
    g.add_nodes(10)
12
13
14
15
16
17
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
18
19
20
    g.set_n_repr({'f1' : F.randn((10,)), 'f2' : F.randn((10, D))})
    weights = F.randn((17,))
    g.set_e_repr({'e1': weights, 'e2': F.unsqueeze(weights, 1)})
21
22
    return g

23
def test_v2v_update_all():
24
    def _test(fld):
25
26
        def message_func(edges):
            return {'m' : edges.src[fld]}
27

28
29
30
        def message_func_edge(edges):
            if len(edges.src[fld].shape) == 1:
                return {'m' : edges.src[fld] * edges.data['e1']}
31
            else:
32
                return {'m' : edges.src[fld] * edges.data['e2']}
33

34
        def reduce_func(nodes):
35
            return {fld : F.sum(nodes.mailbox['m'], 1)}
36

37
38
        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}
39
40
        g = generate_graph()
        # update all
41
        v1 = g.ndata[fld]
Minjie Wang's avatar
Minjie Wang committed
42
        g.update_all(fn.copy_src(src=fld, out='m'), fn.sum(msg='m', out=fld), apply_func)
43
        v2 = g.ndata[fld]
44
        g.set_n_repr({fld : v1})
Minjie Wang's avatar
Minjie Wang committed
45
        g.update_all(message_func, reduce_func, apply_func)
46
        v3 = g.ndata[fld]
47
        assert F.allclose(v2, v3)
48
        # update all with edge weights
49
        v1 = g.ndata[fld]
Minjie Wang's avatar
Minjie Wang committed
50
51
        g.update_all(fn.src_mul_edge(src=fld, edge='e1', out='m'),
                fn.sum(msg='m', out=fld), apply_func)
52
        v2 = g.ndata[fld]
53
        g.set_n_repr({fld : v1})
Minjie Wang's avatar
Minjie Wang committed
54
        g.update_all(message_func_edge, reduce_func, apply_func)
55
        v4 = g.ndata[fld]
56
        assert F.allclose(v2, v4)
57
58
59
60
61
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

62
def test_v2v_snr():
63
64
    u = F.tensor([0, 0, 0, 3, 4, 9])
    v = F.tensor([1, 2, 3, 9, 9, 0])
65
    def _test(fld):
66
67
        def message_func(edges):
            return {'m' : edges.src[fld]}
68

69
70
71
        def message_func_edge(edges):
            if len(edges.src[fld].shape) == 1:
                return {'m' : edges.src[fld] * edges.data['e1']}
72
            else:
73
                return {'m' : edges.src[fld] * edges.data['e2']}
74

75
        def reduce_func(nodes):
76
            return {fld : F.sum(nodes.mailbox['m'], 1)}
77

78
79
        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}
80
81
        g = generate_graph()
        # send and recv
82
83
        v1 = g.ndata[fld]
        g.send_and_recv((u, v), fn.copy_src(src=fld, out='m'),
Minjie Wang's avatar
Minjie Wang committed
84
                fn.sum(msg='m', out=fld), apply_func)
85
        v2 = g.ndata[fld]
86
        g.set_n_repr({fld : v1})
87
88
        g.send_and_recv((u, v), message_func, reduce_func, apply_func)
        v3 = g.ndata[fld]
89
        assert F.allclose(v2, v3)
90
        # send and recv with edge weights
91
92
        v1 = g.ndata[fld]
        g.send_and_recv((u, v), fn.src_mul_edge(src=fld, edge='e1', out='m'),
Minjie Wang's avatar
Minjie Wang committed
93
                fn.sum(msg='m', out=fld), apply_func)
94
        v2 = g.ndata[fld]
95
        g.set_n_repr({fld : v1})
96
97
        g.send_and_recv((u, v), message_func_edge, reduce_func, apply_func)
        v4 = g.ndata[fld]
98
        assert F.allclose(v2, v4)
99
100
101
102
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')
103

104
105

def test_v2v_pull():
106
    nodes = F.tensor([1, 2, 3, 9])
107
108
109
110
111
112
113
114
115
116
117
    def _test(fld):
        def message_func(edges):
            return {'m' : edges.src[fld]}

        def message_func_edge(edges):
            if len(edges.src[fld].shape) == 1:
                return {'m' : edges.src[fld] * edges.data['e1']}
            else:
                return {'m' : edges.src[fld] * edges.data['e2']}

        def reduce_func(nodes):
118
            return {fld : F.sum(nodes.mailbox['m'], 1)}
119
120
121
122
123
124
125
126
127
128
129

        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}
        g = generate_graph()
        # send and recv
        v1 = g.ndata[fld]
        g.pull(nodes, fn.copy_src(src=fld, out='m'), fn.sum(msg='m', out=fld), apply_func)
        v2 = g.ndata[fld]
        g.ndata[fld] = v1
        g.pull(nodes, message_func, reduce_func, apply_func)
        v3 = g.ndata[fld]
130
        assert F.allclose(v2, v3)
131
132
133
        # send and recv with edge weights
        v1 = g.ndata[fld]
        g.pull(nodes, fn.src_mul_edge(src=fld, edge='e1', out='m'),
134
                fn.sum(msg='m', out=fld), apply_func)
135
136
137
138
        v2 = g.ndata[fld]
        g.ndata[fld] = v1
        g.pull(nodes, message_func_edge, reduce_func, apply_func)
        v4 = g.ndata[fld]
139
        assert F.allclose(v2, v4)
140
141
142
143
144
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

145
def test_v2v_update_all_multi_fn():
146
147
    def message_func(edges):
        return {'m2': edges.src['f2']}
148

149
150
    def message_func_edge(edges):
        return {'m2': edges.src['f2'] * edges.data['e2']}
151

152
    def reduce_func(nodes):
153
        return {'v1': F.sum(nodes.mailbox['m2'], 1)}
154
155

    g = generate_graph()
156
    g.set_n_repr({'v1' : F.zeros((10,)), 'v2' : F.zeros((10,))})
157
158
    fld = 'f2'

159
    g.update_all(message_func, reduce_func)
160
    v1 = g.ndata['v1']
161

Minjie Wang's avatar
Minjie Wang committed
162
    # 1 message, 2 reduces
163
    g.update_all(fn.copy_src(src=fld, out='m'), [fn.sum(msg='m', out='v2'), fn.sum(msg='m', out='v3')])
164
165
    v2 = g.ndata['v2']
    v3 = g.ndata['v3']
166
167
    assert F.allclose(v1, v2)
    assert F.allclose(v1, v3)
168
169
170

    # update all with edge weights, 2 message, 3 reduces
    g.update_all([fn.src_mul_edge(src=fld, edge='e1', out='m1'), fn.src_mul_edge(src=fld, edge='e2', out='m2')],
Minjie Wang's avatar
Minjie Wang committed
171
                 [fn.sum(msg='m1', out='v1'), fn.sum(msg='m2', out='v2'), fn.sum(msg='m1', out='v3')],
Minjie Wang's avatar
Minjie Wang committed
172
                 None)
173
174
175
    v1 = g.ndata['v1']
    v2 = g.ndata['v2']
    v3 = g.ndata['v3']
176
177
    assert F.allclose(v1, v2)
    assert F.allclose(v1, v3)
178
179

    # run UDF with single message and reduce
Minjie Wang's avatar
Minjie Wang committed
180
    g.update_all(message_func_edge, reduce_func, None)
181
    v2 = g.ndata['v2']
182
    assert F.allclose(v1, v2)
183

184
def test_v2v_snr_multi_fn():
185
186
    u = F.tensor([0, 0, 0, 3, 4, 9])
    v = F.tensor([1, 2, 3, 9, 9, 0])
187

188
189
    def message_func(edges):
        return {'m2': edges.src['f2']}
190

191
192
    def message_func_edge(edges):
        return {'m2': edges.src['f2'] * edges.data['e2']}
193

194
    def reduce_func(nodes):
195
        return {'v1' : F.sum(nodes.mailbox['m2'], 1)}
196
197

    g = generate_graph()
198
199
    g.set_n_repr({'v1' : F.zeros((10, D)), 'v2' : F.zeros((10, D)),
        'v3' : F.zeros((10, D))})
200
201
    fld = 'f2'

202
    g.send_and_recv((u, v), message_func, reduce_func)
203
    v1 = g.ndata['v1']
204

Minjie Wang's avatar
Minjie Wang committed
205
    # 1 message, 2 reduces
206
    g.send_and_recv((u, v),
Minjie Wang's avatar
Minjie Wang committed
207
208
209
            fn.copy_src(src=fld, out='m'),
            [fn.sum(msg='m', out='v2'), fn.sum(msg='m', out='v3')],
            None)
210
211
    v2 = g.ndata['v2']
    v3 = g.ndata['v3']
212
213
    assert F.allclose(v1, v2)
    assert F.allclose(v1, v3)
214
215

    # send and recv with edge weights, 2 message, 3 reduces
216
    g.send_and_recv((u, v),
217
                    [fn.src_mul_edge(src=fld, edge='e1', out='m1'), fn.src_mul_edge(src=fld, edge='e2', out='m2')],
Minjie Wang's avatar
Minjie Wang committed
218
                    [fn.sum(msg='m1', out='v1'), fn.sum(msg='m2', out='v2'), fn.sum(msg='m1', out='v3')],
Minjie Wang's avatar
Minjie Wang committed
219
                    None)
220
221
222
    v1 = g.ndata['v1']
    v2 = g.ndata['v2']
    v3 = g.ndata['v3']
223
224
    assert F.allclose(v1, v2)
    assert F.allclose(v1, v3)
225
226

    # run UDF with single message and reduce
227
    g.send_and_recv((u, v), message_func_edge,
Minjie Wang's avatar
Minjie Wang committed
228
            reduce_func, None)
229
    v2 = g.ndata['v2']
230
    assert F.allclose(v1, v2)
231

232
233
234
235
236
237
238
def test_e2v_update_all_multi_fn():
    def _test(fld):
        def message_func(edges):
            return {'m1' : edges.src[fld] + edges.dst[fld],
                    'm2' : edges.src[fld] * edges.dst[fld]}

        def reduce_func(nodes):
239
            return {fld : F.sum(nodes.mailbox['m1'] + nodes.mailbox['m2'], 1)}
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}

        def apply_func_2(nodes):
            return {fld : 2 * nodes.data['r1'] + 2 * nodes.data['r2']}

        g = generate_graph()
        # update all
        v1 = g.get_n_repr()[fld]
        # no specialization
        g.update_all(message_func, reduce_func, apply_func)
        v2 = g.get_n_repr()[fld]

        # user break reduce func into 2 builtin
        g.set_n_repr({fld : v1})
        g.update_all(message_func,
                     [fn.sum(msg='m1', out='r1'), fn.sum(msg='m2', out='r2')],
                     apply_func_2)
        v3 = g.get_n_repr()[fld]

261
        assert F.allclose(v2, v3)
262
263
264
265
266
267
268

    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

def test_e2v_snr_multi_fn():
269
270
    u = F.tensor([0, 0, 0, 3, 4, 9])
    v = F.tensor([1, 2, 3, 9, 9, 0])
271
272
273
274
275
276
    def _test(fld):
        def message_func(edges):
            return {'m1' : edges.src[fld] + edges.dst[fld],
                    'm2' : edges.src[fld] * edges.dst[fld]}

        def reduce_func(nodes):
277
            return {fld : F.sum(nodes.mailbox['m1'] + nodes.mailbox['m2'], 1)}
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}

        def apply_func_2(nodes):
            return {fld : 2 * nodes.data['r1'] + 2 * nodes.data['r2']}

        g = generate_graph()
        # send_and_recv
        v1 = g.get_n_repr()[fld]
        # no specialization
        g.send_and_recv((u, v), message_func, reduce_func, apply_func)
        v2 = g.get_n_repr()[fld]

        # user break reduce func into 2 builtin
        g.set_n_repr({fld : v1})
        g.send_and_recv((u, v), message_func,
                        [fn.sum(msg='m1', out='r1'), fn.sum(msg='m2', out='r2')],
                        apply_func_2)
        v3 = g.get_n_repr()[fld]

299
        assert F.allclose(v2, v3)
300
301
302
303
304
305
306

    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

def test_e2v_recv_multi_fn():
307
308
    u = F.tensor([0, 0, 0, 3, 4, 9])
    v = F.tensor([1, 2, 3, 9, 9, 0])
309
310
311
312
313
314
    def _test(fld):
        def message_func(edges):
            return {'m1' : edges.src[fld] + edges.dst[fld],
                    'm2' : edges.src[fld] * edges.dst[fld]}

        def reduce_func(nodes):
315
            return {fld : F.sum(nodes.mailbox['m1'] + nodes.mailbox['m2'], 1)}
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}

        def apply_func_2(nodes):
            return {fld : 2 * nodes.data['r1'] + 2 * nodes.data['r2']}

        g = generate_graph()
        # recv
        v1 = g.get_n_repr()[fld]
        # no specialization
        g.send((u, v), message_func)
        g.recv([0,1,2,3,9], reduce_func, apply_func)
        v2 = g.get_n_repr()[fld]

        # user break reduce func into 2 builtin
        g.set_n_repr({fld : v1})
        g.send((u, v), message_func)
        g.recv([0,1,2,3,9],
               [fn.sum(msg='m1', out='r1'), fn.sum(msg='m2', out='r2')],
               apply_func_2)
        v3 = g.get_n_repr()[fld]

339
        assert F.allclose(v2, v3)
340
341
342
343
344
345

    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

346
def test_update_all_multi_fallback():
347
348
349
350
351
352
    # create a graph with zero in degree nodes
    g = dgl.DGLGraph()
    g.add_nodes(10)
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
353
354
355
    g.ndata['h'] = F.randn((10, D))
    g.edata['w1'] = F.randn((16,))
    g.edata['w2'] = F.randn((16, D))
356
    def _mfunc_hxw1(edges):
357
        return {'m1' : edges.src['h'] * F.unsqueeze(edges.data['w1'], 1)}
358
359
360
    def _mfunc_hxw2(edges):
        return {'m2' : edges.src['h'] * edges.data['w2']}
    def _rfunc_m1(nodes):
361
        return {'o1' : F.sum(nodes.mailbox['m1'], 1)}
362
    def _rfunc_m2(nodes):
363
        return {'o2' : F.sum(nodes.mailbox['m2'], 1)}
364
    def _rfunc_m1max(nodes):
365
        return {'o3' : F.max(nodes.mailbox['m1'], 1)}
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    def _afunc(nodes):
        ret = {}
        for k, v in nodes.data.items():
            if k.startswith('o'):
                ret[k] = 2 * v
        return ret
    # compute ground truth
    g.update_all(_mfunc_hxw1, _rfunc_m1, _afunc)
    o1 = g.ndata.pop('o1')
    g.update_all(_mfunc_hxw2, _rfunc_m2, _afunc)
    o2 = g.ndata.pop('o2')
    g.update_all(_mfunc_hxw1, _rfunc_m1max, _afunc)
    o3 = g.ndata.pop('o3')
    # v2v spmv
    g.update_all(fn.src_mul_edge(src='h', edge='w1', out='m1'),
                 fn.sum(msg='m1', out='o1'),
                 _afunc)
383
    assert F.allclose(o1, g.ndata.pop('o1'))
384
385
386
387
    # v2v fallback to e2v
    g.update_all(fn.src_mul_edge(src='h', edge='w2', out='m2'),
                 fn.sum(msg='m2', out='o2'),
                 _afunc)
388
    assert F.allclose(o2, g.ndata.pop('o2'))
389
390
391
392
    # multi builtins, both v2v spmv
    g.update_all([fn.src_mul_edge(src='h', edge='w1', out='m1'), fn.src_mul_edge(src='h', edge='w1', out='m2')],
                 [fn.sum(msg='m1', out='o1'), fn.sum(msg='m2', out='o2')],
                 _afunc)
393
394
    assert F.allclose(o1, g.ndata.pop('o1'))
    assert F.allclose(o1, g.ndata.pop('o2'))
395
396
397
398
    # multi builtins, one v2v spmv, one fallback to e2v
    g.update_all([fn.src_mul_edge(src='h', edge='w1', out='m1'), fn.src_mul_edge(src='h', edge='w2', out='m2')],
                 [fn.sum(msg='m1', out='o1'), fn.sum(msg='m2', out='o2')],
                 _afunc)
399
400
    assert F.allclose(o1, g.ndata.pop('o1'))
    assert F.allclose(o2, g.ndata.pop('o2'))
401
402
403
404
405
406
407
408

def test_pull_multi_fallback():
    # create a graph with zero in degree nodes
    g = dgl.DGLGraph()
    g.add_nodes(10)
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
409
410
411
    g.ndata['h'] = F.randn((10, D))
    g.edata['w1'] = F.randn((16,))
    g.edata['w2'] = F.randn((16, D))
412
    def _mfunc_hxw1(edges):
413
        return {'m1' : edges.src['h'] * F.unsqueeze(edges.data['w1'], 1)}
414
415
416
    def _mfunc_hxw2(edges):
        return {'m2' : edges.src['h'] * edges.data['w2']}
    def _rfunc_m1(nodes):
417
        return {'o1' : F.sum(nodes.mailbox['m1'], 1)}
418
    def _rfunc_m2(nodes):
419
        return {'o2' : F.sum(nodes.mailbox['m2'], 1)}
420
    def _rfunc_m1max(nodes):
421
        return {'o3' : F.max(nodes.mailbox['m1'], 1)}
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    def _afunc(nodes):
        ret = {}
        for k, v in nodes.data.items():
            if k.startswith('o'):
                ret[k] = 2 * v
        return ret
    # nodes to pull
    def _pull_nodes(nodes):
        # compute ground truth
        g.pull(nodes, _mfunc_hxw1, _rfunc_m1, _afunc)
        o1 = g.ndata.pop('o1')
        g.pull(nodes, _mfunc_hxw2, _rfunc_m2, _afunc)
        o2 = g.ndata.pop('o2')
        g.pull(nodes, _mfunc_hxw1, _rfunc_m1max, _afunc)
        o3 = g.ndata.pop('o3')
        # v2v spmv
        g.pull(nodes, fn.src_mul_edge(src='h', edge='w1', out='m1'),
                     fn.sum(msg='m1', out='o1'),
                     _afunc)
441
        assert F.allclose(o1, g.ndata.pop('o1'))
442
443
444
445
        # v2v fallback to e2v
        g.pull(nodes, fn.src_mul_edge(src='h', edge='w2', out='m2'),
                     fn.sum(msg='m2', out='o2'),
                     _afunc)
446
        assert F.allclose(o2, g.ndata.pop('o2'))
447
448
449
450
451
        # multi builtins, both v2v spmv
        g.pull(nodes,
               [fn.src_mul_edge(src='h', edge='w1', out='m1'), fn.src_mul_edge(src='h', edge='w1', out='m2')],
               [fn.sum(msg='m1', out='o1'), fn.sum(msg='m2', out='o2')],
               _afunc)
452
453
        assert F.allclose(o1, g.ndata.pop('o1'))
        assert F.allclose(o1, g.ndata.pop('o2'))
454
455
456
457
458
        # multi builtins, one v2v spmv, one fallback to e2v
        g.pull(nodes,
               [fn.src_mul_edge(src='h', edge='w1', out='m1'), fn.src_mul_edge(src='h', edge='w2', out='m2')],
               [fn.sum(msg='m1', out='o1'), fn.sum(msg='m2', out='o2')],
               _afunc)
459
460
        assert F.allclose(o1, g.ndata.pop('o1'))
        assert F.allclose(o2, g.ndata.pop('o2'))
461
462
463
464
465
466
467
    # test#1: non-0deg nodes
    nodes = [1, 2, 9]
    _pull_nodes(nodes)
    # test#2: 0deg nodes + non-0deg nodes
    nodes = [0, 1, 2, 9]
    _pull_nodes(nodes)

468
469
def test_spmv_3d_feat():
    def src_mul_edge_udf(edges):
470
        return {'sum': edges.src['h'] * F.unsqueeze(F.unsqueeze(edges.data['h'], 1), 1)}
471
472

    def sum_udf(nodes):
473
        return {'h': F.sum(nodes.mailbox['sum'], 1)}
474
475
476
477
478
479
480
481

    n = 100
    p = 0.1
    a = sp.random(n, n, p, data_rvs=lambda n: np.ones(n))
    g = dgl.DGLGraph(a)
    m = g.number_of_edges()

    # test#1: v2v with adj data
482
483
    h = F.randn((n, 5, 5))
    e = F.randn((m,))
484
485
486
487
488
489
490
491
492

    g.ndata['h'] = h
    g.edata['h'] = e
    g.update_all(message_func=fn.src_mul_edge('h', 'h', 'sum'), reduce_func=fn.sum('sum', 'h')) # 1
    ans = g.ndata['h']

    g.ndata['h'] = h
    g.edata['h'] = e
    g.update_all(message_func=src_mul_edge_udf, reduce_func=fn.sum('sum', 'h')) # 2
493
    assert F.allclose(g.ndata['h'], ans)
494
495
496
497

    g.ndata['h'] = h
    g.edata['h'] = e
    g.update_all(message_func=src_mul_edge_udf, reduce_func=sum_udf) # 3
498
    assert F.allclose(g.ndata['h'], ans)
499
500
501
502
503

    # test#2: e2v
    def src_mul_edge_udf(edges):
        return {'sum': edges.src['h'] * edges.data['h']}

504
505
    h = F.randn((n, 5, 5))
    e = F.randn((m, 5, 5))
506
507
508
509
510
511
512
513
514

    g.ndata['h'] = h
    g.edata['h'] = e
    g.update_all(message_func=fn.src_mul_edge('h', 'h', 'sum'), reduce_func=fn.sum('sum', 'h')) # 1
    ans = g.ndata['h']

    g.ndata['h'] = h
    g.edata['h'] = e
    g.update_all(message_func=src_mul_edge_udf, reduce_func=fn.sum('sum', 'h')) # 2
515
    assert F.allclose(g.ndata['h'], ans)
516
517
518
519

    g.ndata['h'] = h
    g.edata['h'] = e
    g.update_all(message_func=src_mul_edge_udf, reduce_func=sum_udf) # 3
520
    assert F.allclose(g.ndata['h'], ans)
521

522
if __name__ == '__main__':
523
524
    test_v2v_update_all()
    test_v2v_snr()
525
    test_v2v_pull()
526
527
528
529
530
    test_v2v_update_all_multi_fn()
    test_v2v_snr_multi_fn()
    test_e2v_update_all_multi_fn()
    test_e2v_snr_multi_fn()
    test_e2v_recv_multi_fn()
531
532
    test_update_all_multi_fallback()
    test_pull_multi_fallback()
533
    test_spmv_3d_feat()