"src/runtime/resource_manager.cc" did not exist on "e805470101745966f7d978b9264b05b3203c88ba"
test_sampler.py 24.1 KB
Newer Older
1
import backend as F
Da Zheng's avatar
Da Zheng committed
2
3
4
5
import numpy as np
import scipy as sp
import dgl
from dgl import utils
VoVAllen's avatar
VoVAllen committed
6
import unittest
7
from numpy.testing import assert_array_equal
Da Zheng's avatar
Da Zheng committed
8

9
10
np.random.seed(42)

Da Zheng's avatar
Da Zheng committed
11
12
13
14
def generate_rand_graph(n):
    arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
    return dgl.DGLGraph(arr, readonly=True)

15
16
17
def test_create_full():
    g = generate_rand_graph(100)
    full_nf = dgl.contrib.sampling.sampler.create_full_nodeflow(g, 5)
Da Zheng's avatar
Da Zheng committed
18
    assert full_nf.number_of_nodes() == g.number_of_nodes() * 6
19
20
    assert full_nf.number_of_edges() == g.number_of_edges() * 5

Da Zheng's avatar
Da Zheng committed
21
22
23
def test_1neighbor_sampler_all():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
24
    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
Da Zheng's avatar
Da Zheng committed
25
            g, 1, g.number_of_nodes(), neighbor_type='in', num_workers=4)):
26
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
27
        assert len(seed_ids) == 1
28
        src, dst, eid = g.in_edges(seed_ids, form='all')
Da Zheng's avatar
Da Zheng committed
29
30
        assert subg.number_of_nodes() == len(src) + 1
        assert subg.number_of_edges() == len(src)
Da Zheng's avatar
Da Zheng committed
31

Da Zheng's avatar
Da Zheng committed
32
33
34
        assert seed_ids == subg.layer_parent_nid(-1)
        child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all')
        assert F.array_equal(child_src, subg.layer_nid(0))
Da Zheng's avatar
Da Zheng committed
35

Da Zheng's avatar
Da Zheng committed
36
37
        src1 = subg.map_to_parent_nid(child_src)
        assert F.array_equal(src1, src)
Da Zheng's avatar
Da Zheng committed
38
39

def is_sorted(arr):
40
    return np.sum(np.sort(arr) == arr, 0) == len(arr)
Da Zheng's avatar
Da Zheng committed
41
42

def verify_subgraph(g, subg, seed_id):
Da Zheng's avatar
Da Zheng committed
43
44
45
46
    seed_id = F.asnumpy(seed_id)
    seeds = F.asnumpy(subg.map_to_parent_nid(subg.layer_nid(-1)))
    assert seed_id in seeds
    child_seed = F.asnumpy(subg.layer_nid(-1))[seeds == seed_id]
47
    src, dst, eid = g.in_edges(seed_id, form='all')
Da Zheng's avatar
Da Zheng committed
48
49
    child_src, child_dst, child_eid = subg.in_edges(child_seed, form='all')

50
    child_src = F.asnumpy(child_src)
Da Zheng's avatar
Da Zheng committed
51
52
53
54
55
    # We don't allow duplicate elements in the neighbor list.
    assert(len(np.unique(child_src)) == len(child_src))
    # The neighbor list also needs to be sorted.
    assert(is_sorted(child_src))

Da Zheng's avatar
Da Zheng committed
56
    # a neighbor in the subgraph must also exist in parent graph.
57
    src = F.asnumpy(src)
Da Zheng's avatar
Da Zheng committed
58
    for i in subg.map_to_parent_nid(child_src):
59
        assert F.asnumpy(i) in src
Da Zheng's avatar
Da Zheng committed
60
61
62
63

def test_1neighbor_sampler():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
64
65
66
    for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in',
                                                     num_workers=4):
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
67
68
69
70
71
        assert len(seed_ids) == 1
        assert subg.number_of_nodes() <= 6
        assert subg.number_of_edges() <= 5
        verify_subgraph(g, subg, seed_ids)

72
73
74
def test_prefetch_neighbor_sampler():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
75
76
77
    for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in',
                                                     num_workers=4, prefetch=True):
        seed_ids = subg.layer_parent_nid(-1)
78
79
80
81
82
        assert len(seed_ids) == 1
        assert subg.number_of_nodes() <= 6
        assert subg.number_of_edges() <= 5
        verify_subgraph(g, subg, seed_ids)

Da Zheng's avatar
Da Zheng committed
83
84
85
def test_10neighbor_sampler_all():
    g = generate_rand_graph(100)
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
Da Zheng's avatar
Da Zheng committed
86
87
    for subg in dgl.contrib.sampling.NeighborSampler(g, 10, g.number_of_nodes(),
                                                     neighbor_type='in', num_workers=4):
88
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
89
        assert F.array_equal(seed_ids, subg.map_to_parent_nid(subg.layer_nid(-1)))
Da Zheng's avatar
Da Zheng committed
90

Da Zheng's avatar
Da Zheng committed
91
92
93
94
        src, dst, eid = g.in_edges(seed_ids, form='all')
        child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all')
        src1 = subg.map_to_parent_nid(child_src)
        assert F.array_equal(src1, src)
Da Zheng's avatar
Da Zheng committed
95
96
97

def check_10neighbor_sampler(g, seeds):
    # In this case, NeighborSampling simply gets the neighborhood of a single vertex.
98
99
100
    for subg in dgl.contrib.sampling.NeighborSampler(g, 10, 5, neighbor_type='in',
                                                     num_workers=4, seed_nodes=seeds):
        seed_ids = subg.layer_parent_nid(-1)
Da Zheng's avatar
Da Zheng committed
101
102
103
104
105
106
107
108
109
110
111
        assert subg.number_of_nodes() <= 6 * len(seed_ids)
        assert subg.number_of_edges() <= 5 * len(seed_ids)
        for seed_id in seed_ids:
            verify_subgraph(g, subg, seed_id)

def test_10neighbor_sampler():
    g = generate_rand_graph(100)
    check_10neighbor_sampler(g, None)
    check_10neighbor_sampler(g, seeds=np.unique(np.random.randint(0, g.number_of_nodes(),
                                                                  size=int(g.number_of_nodes() / 10))))

112
def _test_layer_sampler(prefetch=False):
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    g = generate_rand_graph(100)
    nid = g.nodes()
    src, dst, eid = g.all_edges(form='all', order='eid')
    n_batches = 5
    batch_size = 50
    seed_batches = [np.sort(np.random.choice(F.asnumpy(nid), batch_size, replace=False))
                    for i in range(n_batches)]
    seed_nodes = np.hstack(seed_batches)
    layer_sizes = [50] * 3
    LayerSampler = getattr(dgl.contrib.sampling, 'LayerSampler')
    sampler = LayerSampler(g, batch_size, layer_sizes, 'in',
                           seed_nodes=seed_nodes, num_workers=4, prefetch=prefetch)
    for sub_g in sampler:
        assert all(sub_g.layer_size(i) < size for i, size in enumerate(layer_sizes))
        sub_nid = F.arange(0, sub_g.number_of_nodes())
        assert all(np.all(np.isin(F.asnumpy(sub_g.layer_nid(i)), F.asnumpy(sub_nid)))
                   for i in range(sub_g.num_layers))
        assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_nid(sub_nid)),
                              F.asnumpy(nid)))
        sub_eid = F.arange(0, sub_g.number_of_edges())
        assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_eid(sub_eid)),
                              F.asnumpy(eid)))
        assert any(np.all(np.sort(F.asnumpy(sub_g.layer_parent_nid(-1))) == seed_batch)
                   for seed_batch in seed_batches)

        sub_src, sub_dst = sub_g.all_edges(order='eid')
        for i in range(sub_g.num_blocks):
            block_eid = sub_g.block_eid(i)
VoVAllen's avatar
VoVAllen committed
141
142
            block_src = sub_g.map_to_parent_nid(F.gather_row(sub_src, block_eid))
            block_dst = sub_g.map_to_parent_nid(F.gather_row(sub_dst, block_eid))
143
144

            block_parent_eid = sub_g.block_parent_eid(i)
VoVAllen's avatar
VoVAllen committed
145
146
            block_parent_src = F.gather_row(src, block_parent_eid)
            block_parent_dst = F.gather_row(dst, block_parent_eid)
147
148
149
150
151
152
153
154
155
156

            assert np.all(F.asnumpy(block_src == block_parent_src))

        n_layers = sub_g.num_layers
        sub_n = sub_g.number_of_nodes()
        assert sum(F.shape(sub_g.layer_nid(i))[0] for i in range(n_layers)) == sub_n
        n_blocks = sub_g.num_blocks
        sub_m = sub_g.number_of_edges()
        assert sum(F.shape(sub_g.block_eid(i))[0] for i in range(n_blocks)) == sub_m

Da Zheng's avatar
Da Zheng committed
157
158
159
160
def test_layer_sampler():
    _test_layer_sampler()
    _test_layer_sampler(prefetch=True)

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def test_nonuniform_neighbor_sampler():
    # Construct a graph with
    # (1) A path (0, 1, ..., 99) with weight 1
    # (2) A bunch of random edges with weight 0.
    edges = []
    for i in range(99):
        edges.append((i, i + 1))
    for i in range(1000):
        edge = (np.random.randint(100), np.random.randint(100))
        if edge not in edges:
            edges.append(edge)
    src, dst = zip(*edges)
    g = dgl.DGLGraph()
    g.add_nodes(100)
    g.add_edges(src, dst)
    g.readonly()

    g.edata['w'] = F.cat([
        F.ones((99,), F.float64, F.cpu()),
        F.zeros((len(edges) - 99,), F.float64, F.cpu())], 0)

    # Test 1-neighbor NodeFlow with 99 as target node.
    # The generated NodeFlow should only contain node i on layer i.
    sampler = dgl.contrib.sampling.NeighborSampler(
        g, 1, 1, 99, 'in', transition_prob='w', seed_nodes=[99])
    nf = next(iter(sampler))

    assert nf.num_layers == 100
    for i in range(nf.num_layers):
        assert nf.layer_size(i) == 1
191
        assert F.asnumpy(nf.layer_parent_nid(i)[0]) == i
192
193
194
195
196
197
198
199
200

    # Test the reverse direction
    sampler = dgl.contrib.sampling.NeighborSampler(
        g, 1, 1, 99, 'out', transition_prob='w', seed_nodes=[0])
    nf = next(iter(sampler))

    assert nf.num_layers == 100
    for i in range(nf.num_layers):
        assert nf.layer_size(i) == 1
201
        assert F.asnumpy(nf.layer_parent_nid(i)[0]) == 99 - i
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
def test_setseed():
    g = generate_rand_graph(100)

    nids = []

    dgl.random.seed(42)
    for subg in dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1):
        nids.append(
            tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3)))

    # reinitialize
    dgl.random.seed(42)
    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1)):
        item = tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3))
        assert item == nids[i]

    for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler(
            g, 5, 3, num_hops=2, neighbor_type='in', num_workers=4)):
        pass

225
226
227
228
229
230
231
232
233
234
235
236
237
def check_head_tail(g):
    lsrc, ldst, leid = g.all_edges(form='all', order='eid')

    lsrc = np.unique(F.asnumpy(lsrc))
    head_nid = np.unique(F.asnumpy(g.head_nid))
    assert len(head_nid) == len(g.head_nid)
    np.testing.assert_equal(lsrc, head_nid)

    ldst = np.unique(F.asnumpy(ldst))
    tail_nid = np.unique(F.asnumpy(g.tail_nid))
    assert len(tail_nid) == len(g.tail_nid)
    np.testing.assert_equal(tail_nid, ldst)

Da Zheng's avatar
Da Zheng committed
238
def check_negative_sampler(mode, exclude_positive, neg_size):
239
    g = generate_rand_graph(100)
240
    num_edges = g.number_of_edges()
241
    etype = np.random.randint(0, 10, size=g.number_of_edges(), dtype=np.int64)
VoVAllen's avatar
VoVAllen committed
242
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())
243
244
245
246
247
248
249
250

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))

251
    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')
252
    # Test the homogeneous graph.
253
254
255
256
    total_samples = 0
    batch_size = 50
    max_samples = num_edges
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
257
258
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
Da Zheng's avatar
Da Zheng committed
259
260
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
261
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
262
263
264
        assert_array_equal(F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)),
                           F.asnumpy(g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc),
                                                F.gather_row(pos_edges.parent_nid, pos_ldst))))
265
266

        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
267

VoVAllen's avatar
VoVAllen committed
268
269
270
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
271
        for i in range(len(neg_eid)):
VoVAllen's avatar
VoVAllen committed
272
273
            neg_d = int(F.asnumpy(neg_dst)[i])
            neg_e = int(F.asnumpy(neg_eid)[i])
274
            assert (neg_d, neg_e) in pos_map
275
276
277
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

278
        check_head_tail(neg_edges)
VoVAllen's avatar
VoVAllen committed
279
280
        pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid)
        neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid)
281
282
283
284
        pos_tails = np.sort(F.asnumpy(pos_tails))
        neg_tails = np.sort(F.asnumpy(neg_tails))
        np.testing.assert_equal(pos_tails, neg_tails)

Da Zheng's avatar
Da Zheng committed
285
        exist = neg_edges.edata['false_neg']
286
287
288
289
290
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)

291
292
293
294
        total_samples += batch_size
        if (total_samples >= max_samples):
            break

295
    # Test the knowledge graph.
296
297
    total_samples = 0
    for _, neg_edges in EdgeSampler(g, batch_size,
298
299
300
                                    negative_mode=mode,
                                    neg_sample_size=neg_size,
                                    exclude_positive=exclude_positive,
Da Zheng's avatar
Da Zheng committed
301
302
                                    relations=g.edata['etype'],
                                    return_false_neg=True):
303
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
VoVAllen's avatar
VoVAllen committed
304
305
306
        neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc)
        neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst)
        neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid)
Da Zheng's avatar
Da Zheng committed
307
        exists = neg_edges.edata['false_neg']
308
309
310
311
312
313
314
315
        neg_edges.edata['etype'] = g.edata['etype'][neg_eid]
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
        total_samples += batch_size
        if (total_samples >= max_samples):
            break

def check_weighted_negative_sampler(mode, exclude_positive, neg_size):
    g = generate_rand_graph(100)
    num_edges = g.number_of_edges()
    num_nodes = g.number_of_nodes()
    edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu())
    node_weight = F.copy_to(F.tensor(np.full((num_nodes,), 1, dtype=np.float32)), F.cpu())
    etype = np.random.randint(0, 10, size=num_edges, dtype=np.int64)
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())

    pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid')
    pos_map = {}
    for i in range(len(pos_geid)):
        pos_d = int(F.asnumpy(pos_gdst[i]))
        pos_e = int(F.asnumpy(pos_geid[i]))
        pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i]))
    EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler')

    # Correctness check
    # Test the homogeneous graph.
    batch_size = 50
    total_samples = 0
    max_samples = num_edges
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            return_false_neg=True):
        pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid')
        assert_array_equal(F.asnumpy(pos_edges.parent_eid[pos_leid]),
                           F.asnumpy(g.edge_ids(pos_edges.parent_nid[pos_lsrc],
                                                pos_edges.parent_nid[pos_ldst])))
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')

        neg_src = neg_edges.parent_nid[neg_lsrc]
        neg_dst = neg_edges.parent_nid[neg_ldst]
        neg_eid = neg_edges.parent_eid[neg_leid]
        for i in range(len(neg_eid)):
            neg_d = int(F.asnumpy(neg_dst[i]))
            neg_e = int(F.asnumpy(neg_eid[i]))
            assert (neg_d, neg_e) in pos_map
            if exclude_positive:
                assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)]

        check_head_tail(neg_edges)
        pos_tails = pos_edges.parent_nid[pos_edges.tail_nid]
        neg_tails = neg_edges.parent_nid[neg_edges.tail_nid]
        pos_tails = np.sort(F.asnumpy(pos_tails))
        neg_tails = np.sort(F.asnumpy(neg_tails))
        np.testing.assert_equal(pos_tails, neg_tails)

        exist = neg_edges.edata['false_neg']
        if exclude_positive:
            assert np.sum(F.asnumpy(exist) == 0) == len(exist)
        else:
            assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist)
        total_samples += batch_size
        if (total_samples >= max_samples):
            break

    # Test the knowledge graph with edge weight provied.
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
        neg_src = neg_edges.parent_nid[neg_lsrc]
        neg_dst = neg_edges.parent_nid[neg_ldst]
        neg_eid = neg_edges.parent_eid[neg_leid]
        exists = neg_edges.edata['false_neg']
        neg_edges.edata['etype'] = g.edata['etype'][neg_eid]
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
        total_samples += batch_size
        if (total_samples >= max_samples):
            break

    # Test the knowledge graph with edge/node weight provied.
    total_samples = 0
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=exclude_positive,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid')
        neg_src = neg_edges.parent_nid[neg_lsrc]
        neg_dst = neg_edges.parent_nid[neg_ldst]
        neg_eid = neg_edges.parent_eid[neg_leid]
        exists = neg_edges.edata['false_neg']
        neg_edges.edata['etype'] = g.edata['etype'][neg_eid]
        for i in range(len(neg_eid)):
            u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i])
            if g.has_edge_between(u, v):
                eid = g.edge_id(u, v)
                etype = g.edata['etype'][eid]
                exist = neg_edges.edata['etype'][i] == etype
                assert F.asnumpy(exists[i]) == F.asnumpy(exist)
        total_samples += batch_size
        if (total_samples >= max_samples):
            break

    # Check Rate
    dgl.random.seed(0)
    g = generate_rand_graph(1000)
    num_edges = g.number_of_edges()
    num_nodes = g.number_of_nodes()
    edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu())
    edge_weight[0] = F.sum(edge_weight, dim=0)
    node_weight = F.copy_to(F.tensor(np.full((num_nodes,), 1, dtype=np.float32)), F.cpu())
    node_weight[-1] = F.sum(node_weight, dim=0) / 200
    etype = np.random.randint(0, 20, size=num_edges, dtype=np.int64)
    g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu())

    # Test w/o node weight.
    max_samples = num_edges / 5
    # Test the knowledge graph with edge weight provied.
    total_samples = 0
    edge_sampled = np.full((num_edges,), 0, dtype=np.int32)
    node_sampled = np.full((num_nodes,), 0, dtype=np.int32)
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            edge_weight=edge_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=False,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid')
        if 'head' in mode:
            neg_src = neg_edges.parent_nid[neg_lsrc]
            np.add.at(node_sampled, F.asnumpy(neg_src), 1)
        else:
            neg_dst = neg_edges.parent_nid[neg_ldst]
            np.add.at(node_sampled, F.asnumpy(neg_dst), 1)
        np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1)

        total_samples += batch_size
        if (total_samples >= max_samples):
            break
    # Check rate here
    edge_rate_0 = edge_sampled[0] / edge_sampled.sum()
    edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum()
    edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum()
    assert np.allclose(edge_rate_0, 0.5, atol=0.05)
    assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05)

    node_rate_0 = node_sampled[0] / node_sampled.sum()
    node_tail_half_cnt = node_sampled[node_sampled.shape[0] // 2:-1].sum()
    node_rate_tail_half = node_tail_half_cnt / node_sampled.sum()
    assert node_rate_0 < 0.02
    assert np.allclose(node_rate_tail_half, 0.5, atol=0.02)

    # Test the knowledge graph with edge/node weight provied.
    total_samples = 0
    edge_sampled = np.full((num_edges,), 0, dtype=np.int32)
    node_sampled = np.full((num_nodes,), 0, dtype=np.int32)
    for pos_edges, neg_edges in EdgeSampler(g, batch_size,
                                            edge_weight=edge_weight,
                                            node_weight=node_weight,
                                            negative_mode=mode,
                                            neg_sample_size=neg_size,
                                            exclude_positive=False,
                                            relations=g.edata['etype'],
                                            return_false_neg=True):
        _, _, pos_leid = pos_edges.all_edges(form='all', order='eid')
        neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid')
        if 'head' in mode:
            neg_src = neg_edges.parent_nid[neg_lsrc]
            np.add.at(node_sampled, F.asnumpy(neg_src), 1)
        else:
            neg_dst = neg_edges.parent_nid[neg_ldst]
            np.add.at(node_sampled, F.asnumpy(neg_dst), 1)
        np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1)

        total_samples += batch_size
        if (total_samples >= max_samples):
            break

    # Check rate here
    edge_rate_0 = edge_sampled[0] / edge_sampled.sum()
    edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum()
    edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum()
    assert np.allclose(edge_rate_0, 0.5, atol=0.05)
    assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05)

    node_rate = node_sampled[-1] / node_sampled.sum()
    node_rate_a = np.average(node_sampled[:50]) / node_sampled.sum()
    node_rate_b = np.average(node_sampled[50:100]) / node_sampled.sum()
    # As neg sampling does not contain duplicate nodes,
    # this test takes some acceptable variation on the sample rate.
    assert np.allclose(node_rate, node_rate_a * 5, atol=0.002)
    assert np.allclose(node_rate_a, node_rate_b, atol=0.0002)
524

VoVAllen's avatar
VoVAllen committed
525
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="Core dump")
526
def test_negative_sampler():
Da Zheng's avatar
Da Zheng committed
527
528
529
    check_negative_sampler('PBG-head', False, 10)
    check_negative_sampler('head', True, 10)
    check_negative_sampler('head', False, 10)
530
531
532
    check_weighted_negative_sampler('PBG-head', False, 10)
    check_weighted_negative_sampler('head', True, 10)
    check_weighted_negative_sampler('head', False, 10)
Da Zheng's avatar
Da Zheng committed
533
534
    #disable this check for now. It might take too long time.
    #check_negative_sampler('head', False, 100)
535
536


Da Zheng's avatar
Da Zheng committed
537
if __name__ == '__main__':
538
    test_create_full()
Da Zheng's avatar
Da Zheng committed
539
540
541
542
    test_1neighbor_sampler_all()
    test_10neighbor_sampler_all()
    test_1neighbor_sampler()
    test_10neighbor_sampler()
Da Zheng's avatar
Da Zheng committed
543
    test_layer_sampler()
544
    test_nonuniform_neighbor_sampler()
545
    test_setseed()
546
    test_negative_sampler()