gcn_spmv.py 3.97 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
Semi-Supervised Classification with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1609.02907
Code: https://github.com/tkipf/gcn

GCN with SPMV specialization.
"""
import argparse
import numpy as np
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
15
import dgl.function as fn
Minjie Wang's avatar
Minjie Wang committed
16
from dgl import DGLGraph
17
from dgl.data import register_data_args, load_data
Minjie Wang's avatar
Minjie Wang committed
18

19
class NodeApplyModule(nn.Module):
Minjie Wang's avatar
Minjie Wang committed
20
    def __init__(self, in_feats, out_feats, activation=None):
21
        super(NodeApplyModule, self).__init__()
Minjie Wang's avatar
Minjie Wang committed
22
23
24
        self.linear = nn.Linear(in_feats, out_feats)
        self.activation = activation

25
26
    def forward(self, node):
        h = self.linear(node)
Minjie Wang's avatar
Minjie Wang committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
        if self.activation:
            h = self.activation(h)
        return h

class GCN(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.g = g
        self.dropout = dropout
        # input layer
44
        self.layers = nn.ModuleList([NodeApplyModule(in_feats, n_hidden, activation)])
Minjie Wang's avatar
Minjie Wang committed
45
46
        # hidden layers
        for i in range(n_layers - 1):
47
            self.layers.append(NodeApplyModule(n_hidden, n_hidden, activation))
Minjie Wang's avatar
Minjie Wang committed
48
        # output layer
49
        self.layers.append(NodeApplyModule(n_hidden, n_classes))
Minjie Wang's avatar
Minjie Wang committed
50
51
52
53
54
55
56
57

    def forward(self, features):
        self.g.set_n_repr(features)
        for layer in self.layers:
            # apply dropout
            if self.dropout:
                val = F.dropout(self.g.get_n_repr(), p=self.dropout)
                self.g.set_n_repr(val)
58
            self.g.update_all(fn.copy_src(), fn.sum(), layer, batchable=True)
Minjie Wang's avatar
Minjie Wang committed
59
60
61
62
        return self.g.pop_n_repr()

def main(args):
    # load and preprocess dataset
63
64
    data = load_data(args)

Minjie Wang's avatar
Minjie Wang committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
    mask = torch.ByteTensor(data.train_mask)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        mask = mask.cuda()

    # create GCN model
    g = DGLGraph(data.graph)
    model = GCN(g,
                in_feats,
                args.n_hidden,
                n_classes,
                args.n_layers,
                F.relu,
                args.dropout)

    if cuda:
        model.cuda()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        logp = F.log_softmax(logits, 1)
        loss = F.nll_loss(logp[mask], labels[mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format(
            epoch, loss.item(), np.mean(dur), n_edges / np.mean(dur) / 1000))

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
119
    register_data_args(parser)
Minjie Wang's avatar
Minjie Wang committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-3,
            help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=20,
            help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
            help="number of hidden gcn layers")
    args = parser.parse_args()
    print(args)

    main(args)