data_shuffle.py 52 KB
Newer Older
1
2
3
import gc
import logging
import math
4
5
import os
import sys
6
7
8
from datetime import timedelta
from timeit import default_timer as timer

9
10
import constants

11
import dgl
12
13
14
15
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
16
from convert_partition import create_dgl_object, create_metadata_json
17
from dataset_utils import get_dataset
18
from dist_lookup import DistLookupService
19
20
21
22
23
from globalids import (
    assign_shuffle_global_nids_edges,
    assign_shuffle_global_nids_nodes,
    lookup_shuffle_global_nids_edges,
)
24
from gloo_wrapper import allgather_sizes, alltoallv_cpu, gather_metadata_json
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from utils import (
    augment_edge_data,
    get_edge_types,
    get_etype_featnames,
    get_gnid_range_map,
    get_idranges,
    get_node_types,
    get_ntype_featnames,
    map_partid_rank,
    memory_snapshot,
    read_json,
    read_ntype_partition_files,
    write_dgl_objects,
    write_metadata_json,
)


def gen_node_data(
    rank, world_size, num_parts, id_lookup, ntid_ntype_map, schema_map
):
    """
46
47
    For this data processing pipeline, reading node files is not needed. All the needed information about
    the nodes can be found in the metadata json file. This function generates the nodes owned by a given
48
    process, using metis partitions.
49

50
    Parameters:
51
52
    -----------
    rank : int
53
        rank of the process
54
    world_size : int
55
        total no. of processes
56
57
    num_parts : int
        total no. of partitions
58
    id_lookup : instance of class DistLookupService
59
       Distributed lookup service used to map global-nids to respective partition-ids and
60
       shuffle-global-nids
61
    ntid_ntype_map :
62
        a dictionary where keys are node_type ids(integers) and values are node_type names(strings).
63
    schema_map:
64
        dictionary formed by reading the input metadata json file for the input dataset.
65
66
67

        Please note that, it is assumed that for the input graph files, the nodes of a particular node-type are
        split into `p` files (because of `p` partitions to be generated). On a similar node, edges of a particular
68
        edge-type are split into `p` files as well.
69

70
71
        #assuming m nodetypes present in the input graph
        "num_nodes_per_chunk" : [
72
73
            [a0, a1, a2, ... a<p-1>],
            [b0, b1, b2, ... b<p-1>],
74
75
76
            ...
            [m0, m1, m2, ... m<p-1>]
        ]
77
        Here, each sub-list, corresponding a nodetype in the input graph, has `p` elements. For instance [a0, a1, ... a<p-1>]
78
79
80
        where each element represents the number of nodes which are to be processed by a process during distributed partitioning.

        In addition to the above key-value pair for the nodes in the graph, the node-features are captured in the
81
        "node_data" key-value pair. In this dictionary the keys will be nodetype names and value will be a dictionary which
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        is used to capture all the features present for that particular node-type. This is shown in the following example:

        "node_data" : {
            "paper": {       # node type
                "feat": {   # feature key
                    "format": {"name": "numpy"},
                    "data": ["node_data/paper-feat-part1.npy", "node_data/paper-feat-part2.npy"]
                },
                "label": {   # feature key
                    "format": {"name": "numpy"},
                    "data": ["node_data/paper-label-part1.npy", "node_data/paper-label-part2.npy"]
                },
                "year": {   # feature key
                    "format": {"name": "numpy"},
                    "data": ["node_data/paper-year-part1.npy", "node_data/paper-year-part2.npy"]
                }
            }
        }
100
101
102
        In the above textual description we have a node-type, which is paper, and it has 3 features namely feat, label and year.
        Each feature has `p` files whose location in the filesystem is the list for the key "data" and "foramt" is used to
        describe storage format.
103
104
105

    Returns:
    --------
106
107
    dictionary :
        dictionary where keys are column names and values are numpy arrays, these arrays are generated by
108
109
        using information present in the metadata json file

110
    """
111
    local_node_data = {}
112
113
114
115
116
117
    for local_part_id in range(num_parts // world_size):
        local_node_data[constants.GLOBAL_NID + "/" + str(local_part_id)] = []
        local_node_data[constants.NTYPE_ID + "/" + str(local_part_id)] = []
        local_node_data[
            constants.GLOBAL_TYPE_NID + "/" + str(local_part_id)
        ] = []
118
119

    # Note that `get_idranges` always returns two dictionaries. Keys in these
120
    # dictionaries are type names for nodes and edges and values are
121
    # `num_parts` number of tuples indicating the range of type-ids in first
122
123
124
125
126
127
    # dictionary and range of global-nids in the second dictionary.
    type_nid_dict, global_nid_dict = get_idranges(
        schema_map[constants.STR_NODE_TYPE],
        schema_map[constants.STR_NUM_NODES_PER_CHUNK],
        num_chunks=num_parts,
    )
128

129
    for ntype_id, ntype_name in ntid_ntype_map.items():
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        type_start, type_end = (
            type_nid_dict[ntype_name][0][0],
            type_nid_dict[ntype_name][-1][1],
        )
        gnid_start, gnid_end = (
            global_nid_dict[ntype_name][0, 0],
            global_nid_dict[ntype_name][0, 1],
        )

        node_partid_slice = id_lookup.get_partition_ids(
            np.arange(gnid_start, gnid_end, dtype=np.int64)
        )  # exclusive

        for local_part_id in range(num_parts // world_size):
            cond = node_partid_slice == (rank + local_part_id * world_size)
145
146
147
148
149
            own_gnids = np.arange(gnid_start, gnid_end, dtype=np.int64)
            own_gnids = own_gnids[cond]

            own_tnids = np.arange(type_start, type_end, dtype=np.int64)
            own_tnids = own_tnids[cond]
150

151
152
153
154
155
156
157
158
159
            local_node_data[
                constants.NTYPE_ID + "/" + str(local_part_id)
            ].append(np.ones(own_gnids.shape, dtype=np.int64) * ntype_id)
            local_node_data[
                constants.GLOBAL_NID + "/" + str(local_part_id)
            ].append(own_gnids)
            local_node_data[
                constants.GLOBAL_TYPE_NID + "/" + str(local_part_id)
            ].append(own_tnids)
160
161
162
163
164

    for k in local_node_data.keys():
        local_node_data[k] = np.concatenate(local_node_data[k])

    return local_node_data
165

166

167
def exchange_edge_data(rank, world_size, num_parts, edge_data, id_lookup):
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    """
    Exchange edge_data among processes in the world.
    Prepare list of sliced data targeting each process and trigger
    alltoallv_cpu to trigger messaging api

    Parameters:
    -----------
    rank : int
        rank of the process
    world_size : int
        total no. of processes
    edge_data : dictionary
        edge information, as a dicitonary which stores column names as keys and values
        as column data. This information is read from the edges.txt file.
182
    id_lookup : DistLookService object
183
184
185

    Returns:
    --------
186
    dictionary :
187
188
189
190
        the input argument, edge_data, is updated with the edge data received by other processes
        in the world.
    """

191
    # Prepare data for each rank in the cluster.
192
    start = timer()
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    CHUNK_SIZE = 100 * 1000 * 1000  # 100 * 8 * 5 = 1 * 4 = 8 GB/message/node
    num_edges = edge_data[constants.GLOBAL_SRC_ID].shape[0]
    all_counts = allgather_sizes(
        [num_edges], world_size, num_parts, return_sizes=True
    )
    max_edges = np.amax(all_counts)
    all_edges = np.sum(all_counts)
    num_chunks = (max_edges // CHUNK_SIZE) + (
        0 if (max_edges % CHUNK_SIZE == 0) else 1
    )
    LOCAL_CHUNK_SIZE = (num_edges // num_chunks) + (
        0 if (num_edges % num_chunks == 0) else 1
    )
    logging.info(
        f"[Rank: {rank} Edge Data Shuffle - max_edges: {max_edges}, \
                        local_edges: {num_edges} and num_chunks: {num_chunks} \
                        Total edges: {all_edges} Local_CHUNK_SIZE: {LOCAL_CHUNK_SIZE}"
    )

    # Start sending the chunks to the rest of the processes
    for local_part_id in range(num_parts // world_size):
        local_src_ids = []
        local_dst_ids = []
        local_type_eids = []
        local_etype_ids = []
        local_eids = []

        for chunk in range(num_chunks):
            start = chunk * LOCAL_CHUNK_SIZE
            end = (chunk + 1) * LOCAL_CHUNK_SIZE

            logging.info(
                f"[Rank: {rank}] EdgeData Shuffle: processing \
                    local_part_id: {local_part_id} and chunkid: {chunk}"
228
            )
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
            cur_src_id = edge_data[constants.GLOBAL_SRC_ID][start:end]
            cur_dst_id = edge_data[constants.GLOBAL_DST_ID][start:end]
            cur_type_eid = edge_data[constants.GLOBAL_TYPE_EID][start:end]
            cur_etype_id = edge_data[constants.ETYPE_ID][start:end]
            cur_eid = edge_data[constants.GLOBAL_EID][start:end]

            input_list = []
            owner_ids = id_lookup.get_partition_ids(cur_dst_id)
            for idx in range(world_size):
                send_idx = owner_ids == (idx + local_part_id * world_size)
                send_idx = send_idx.reshape(cur_src_id.shape[0])
                filt_data = np.column_stack(
                    (
                        cur_src_id[send_idx == 1],
                        cur_dst_id[send_idx == 1],
                        cur_type_eid[send_idx == 1],
                        cur_etype_id[send_idx == 1],
                        cur_eid[send_idx == 1],
                    )
248
                )
249
250
251
252
253
254
255
256
257
                if filt_data.shape[0] <= 0:
                    input_list.append(torch.empty((0, 5), dtype=torch.int64))
                else:
                    input_list.append(torch.from_numpy(filt_data))

            # Now send newly formed chunk to others.
            dist.barrier()
            output_list = alltoallv_cpu(
                rank, world_size, input_list, retain_nones=False
258
            )
259

260
261
262
263
264
265
266
267
            # Replace the values of the edge_data, with the received data from all the other processes.
            rcvd_edge_data = torch.cat(output_list).numpy()
            local_src_ids.append(rcvd_edge_data[:, 0])
            local_dst_ids.append(rcvd_edge_data[:, 1])
            local_type_eids.append(rcvd_edge_data[:, 2])
            local_etype_ids.append(rcvd_edge_data[:, 3])
            local_eids.append(rcvd_edge_data[:, 4])

268
269
        edge_data[
            constants.GLOBAL_SRC_ID + "/" + str(local_part_id)
270
        ] = np.concatenate(local_src_ids)
271
272
        edge_data[
            constants.GLOBAL_DST_ID + "/" + str(local_part_id)
273
        ] = np.concatenate(local_dst_ids)
274
275
        edge_data[
            constants.GLOBAL_TYPE_EID + "/" + str(local_part_id)
276
        ] = np.concatenate(local_type_eids)
277
278
        edge_data[
            constants.ETYPE_ID + "/" + str(local_part_id)
279
        ] = np.concatenate(local_etype_ids)
280
281
        edge_data[
            constants.GLOBAL_EID + "/" + str(local_part_id)
282
283
284
285
286
287
288
289
290
291
292
293
294
        ] = np.concatenate(local_eids)

    # Check if the data was exchanged correctly
    local_edge_count = 0
    for local_part_id in range(num_parts // world_size):
        local_edge_count += edge_data[
            constants.GLOBAL_SRC_ID + "/" + str(local_part_id)
        ].shape[0]
    shuffle_edge_counts = allgather_sizes(
        [local_edge_count], world_size, num_parts, return_sizes=True
    )
    shuffle_edge_total = np.sum(shuffle_edge_counts)
    assert shuffle_edge_total == all_edges
295

296
    end = timer()
297
298
299
    logging.info(
        f"[Rank: {rank}] Time to send/rcv edge data: {timedelta(seconds=end-start)}"
    )
300

301
302
303
304
305
306
307
    # Clean up.
    edge_data.pop(constants.GLOBAL_SRC_ID)
    edge_data.pop(constants.GLOBAL_DST_ID)
    edge_data.pop(constants.GLOBAL_TYPE_EID)
    edge_data.pop(constants.ETYPE_ID)
    edge_data.pop(constants.GLOBAL_EID)

308
309
    return edge_data

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

def exchange_feature(
    rank,
    data,
    id_lookup,
    feat_type,
    feat_key,
    featdata_key,
    gid_start,
    gid_end,
    type_id_start,
    type_id_end,
    local_part_id,
    world_size,
    num_parts,
    cur_features,
    cur_global_ids,
):
    """This function is used to send/receive one feature for either nodes or
329
330
331
332
333
    edges of the input graph dataset.

    Parameters:
    -----------
    rank : int
334
        integer, unique id assigned to the current process
335
    data: dicitonary
336
337
        dictionry in which node or edge features are stored and this information
        is read from the appropriate node features file which belongs to the
338
339
340
341
342
        current process
    id_lookup : instance of DistLookupService
        instance of an implementation of dist. lookup service to retrieve values
        for keys
    feat_type : string
343
344
345
        this is used to distinguish which features are being exchanged. Please
        note that for nodes ownership is clearly defined and for edges it is
        always assumed that destination end point of the edge defines the
346
347
        ownership of that particular edge
    feat_key : string
348
        this string is used as a key in the dictionary to store features, as
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        tensors, in local dictionaries
    featdata_key : numpy array
        features associated with this feature key being processed
    gid_start : int
        starting global_id, of either node or edge, for the feature data
    gid_end : int
        ending global_if, of either node or edge, for the feature data
    type_id_start : int
        starting type_id for the feature data
    type_id_end : int
        ending type_id for the feature data
    local_part_id : int
        integers used to the identify the local partition id used to locate
        data belonging to this partition
    world_size : int
        total number of processes created
    num_parts : int
        total number of partitions
    cur_features : dictionary
368
        dictionary to store the feature data which belongs to the current
369
370
        process
    cur_global_ids : dictionary
371
        dictionary to store global ids, of either nodes or edges, for which
372
        the features stored in the cur_features dictionary
373

374
375
376
    Returns:
    -------
    dictionary :
377
        a dictionary is returned where keys are type names and
378
379
        feature data are the values
    list :
380
        a dictionary of global_ids either nodes or edges whose features are
381
382
        received during the data shuffle process
    """
383
    # type_ids for this feature subset on the current rank
384
385
386
387
388
389
390
391
392
    gids_feat = np.arange(gid_start, gid_end)
    tids_feat = np.arange(type_id_start, type_id_end)
    local_idx = np.arange(0, type_id_end - type_id_start)

    feats_per_rank = []
    global_id_per_rank = []

    tokens = feat_key.split("/")
    assert len(tokens) == 3
393

394
    local_feat_key = "/".join(tokens[:-1]) + "/" + str(local_part_id)
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    # Get the partition ids for the range of global nids.
    if feat_type == constants.STR_NODE_FEATURES:
        # Retrieve the partition ids for the node features.
        # Each partition id will be in the range [0, num_parts).
        partid_slice = id_lookup.get_partition_ids(
            np.arange(gid_start, gid_end, dtype=np.int64)
        )
    else:
        # Edge data case.
        # Ownership is determined by the destination node.
        assert data is not None
        global_eids = np.arange(gid_start, gid_end, dtype=np.int64)

        # Now use `data` to extract destination nodes' global id
        # and use that to get the ownership
        common, idx1, idx2 = np.intersect1d(
            data[constants.GLOBAL_EID], global_eids, return_indices=True
        )
        assert common.shape[0] == idx2.shape[0]
414

415
416
417
        global_dst_nids = data[constants.GLOBAL_DST_ID][idx1]
        assert np.all(global_eids == data[constants.GLOBAL_EID][idx1])
        partid_slice = id_lookup.get_partition_ids(global_dst_nids)
418

419
    for idx in range(world_size):
420
        cond = partid_slice == (idx + local_part_id * world_size)
421
422
423
424
        gids_per_partid = gids_feat[cond]
        tids_per_partid = tids_feat[cond]
        local_idx_partid = local_idx[cond]

425
426
427
        if gids_per_partid.shape[0] == 0:
            feats_per_rank.append(torch.empty((0, 1), dtype=torch.float))
            global_id_per_rank.append(torch.empty((0, 1), dtype=torch.int64))
428
429
        else:
            feats_per_rank.append(featdata_key[local_idx_partid])
430
431
432
433
434
435
436
437
438
439
440
441
            global_id_per_rank.append(
                torch.from_numpy(gids_per_partid).type(torch.int64)
            )

    # features (and global nids) per rank to be sent out are ready
    # for transmission, perform alltoallv here.
    output_feat_list = alltoallv_cpu(
        rank, world_size, feats_per_rank, retain_nones=False
    )
    output_id_list = alltoallv_cpu(
        rank, world_size, global_id_per_rank, retain_nones=False
    )
442
443
444
445
    assert len(output_feat_list) == len(output_id_list), (
        "Length of feature list and id list are expected to be equal while "
        f"got {len(output_feat_list)} and {len(output_id_list)}."
    )
446

447
    # stitch node_features together to form one large feature tensor
448
449
450
    if len(output_feat_list) > 0:
        output_feat_list = torch.cat(output_feat_list)
        output_id_list = torch.cat(output_id_list)
451
        if local_feat_key in cur_features:
452
453
454
455
456
457
458
            temp = cur_features[local_feat_key]
            cur_features[local_feat_key] = torch.cat([temp, output_feat_list])
            temp = cur_global_ids[local_feat_key]
            cur_global_ids[local_feat_key] = torch.cat([temp, output_id_list])
        else:
            cur_features[local_feat_key] = output_feat_list
            cur_global_ids[local_feat_key] = output_id_list
459
460
461
462

    return cur_features, cur_global_ids


463
464
465
466
467
468
469
470
471
472
473
def exchange_features(
    rank,
    world_size,
    num_parts,
    feature_tids,
    type_id_map,
    id_lookup,
    feature_data,
    feat_type,
    data,
):
474
475
    """
    This function is used to shuffle node features so that each process will receive
476
    all the node features whose corresponding nodes are owned by the same process.
477
478
    The mapping procedure to identify the owner process is not straight forward. The
    following steps are used to identify the owner processes for the locally read node-
479
    features.
480
481
    a. Compute the global_nids for the locally read node features. Here metadata json file
        is used to identify the corresponding global_nids. Please note that initial graph input
482
483
484
485
486
        nodes.txt files are sorted based on node_types.
    b. Using global_nids and metis partitions owner processes can be easily identified.
    c. Now each process sends the global_nids for which shuffle_global_nids are needed to be
        retrieved.
    d. After receiving the corresponding shuffle_global_nids these ids are added to the
487
        node_data and edge_data dictionaries
488

489
490
    This pipeline assumes all the input data in numpy format, except node/edge features which
    are maintained as tensors throughout the various stages of the pipeline execution.
491

492
    Parameters:
493
494
495
496
    -----------
    rank : int
        rank of the current process
    world_size : int
497
        total no. of participating processes.
498
    feature_tids : dictionary
499
        dictionary with keys as node-type names with suffixes as feature names
500
501
502
        and value is a dictionary. This dictionary contains information about
        node-features associated with a given node-type and value is a list.
        This list contains a of indexes, like [starting-idx, ending-idx) which
503
        can be used to index into the node feature tensors read from
504
505
        corresponding input files.
    type_id_map : dictionary
506
        mapping between type names and global_ids, of either nodes or edges,
507
        which belong to the keys in this dictionary
508
    id_lookup : instance of class DistLookupService
509
       Distributed lookup service used to map global-nids to respective
510
       partition-ids and shuffle-global-nids
511
    feat_type : string
512
513
514
        this is used to distinguish which features are being exchanged. Please
        note that for nodes ownership is clearly defined and for edges it is
        always assumed that destination end point of the edge defines the
515
516
517
        ownership of that particular edge
    data: dicitonary
        dictionry in which node or edge features are stored and this information
518
        is read from the appropriate node features file which belongs to the
519
        current process
520
521
522

    Returns:
    --------
523
    dictionary :
524
        a dictionary is returned where keys are type names and
525
526
        feature data are the values
    list :
527
        a dictionary of global_ids either nodes or edges whose features are
528
        received during the data shuffle process
529
530
    """
    start = timer()
531
    own_features = {}
532
533
534
535
536
537
538
    own_global_ids = {}

    # To iterate over the node_types and associated node_features
    for feat_key, type_info in feature_tids.items():
        # To iterate over the feature data, of a given (node or edge )type
        # type_info is a list of 3 elements (as shown below):
        #   [feature-name, starting-idx, ending-idx]
539
        #       feature-name is the name given to the feature-data,
540
        #       read from the input metadata file
541
542
        #       [starting-idx, ending-idx) specifies the range of indexes
        #        associated with the features data
543
544
        # Determine the owner process for these features.
        # Note that the keys in the node features (and similarly edge features)
545
        # dictionary is of the following format:
546
        #   `node_type/feature_name/local_part_id`:
547
548
549
        #    where node_type and feature_name are self-explanatory and
        #    local_part_id denotes the partition-id, in the local process,
        #    which will be used a suffix to store all the information of a
550
        #    given partition which is processed by the current process. Its
551
        #    values start from 0 onwards, for instance 0, 1, 2 ... etc.
552
        #    local_part_id can be easily mapped to global partition id very
553
        #    easily, using cyclic ordering. All local_part_ids = 0 from all
554
555
556
557
558
559
560
561
        #    processes will form global partition-ids between 0 and world_size-1.
        #    Similarly all local_part_ids = 1 from all processes will form
        #    global partition ids in the range [world_size, 2*world_size-1] and
        #    so on.
        tokens = feat_key.split("/")
        assert len(tokens) == 3
        type_name = tokens[0]
        feat_name = tokens[1]
562
        logging.info(f"[Rank: {rank}] processing feature: {feat_key}")
563

564
565
566
567
568
569
570
571
572
573
574
        for feat_info in type_info:
            # Compute the global_id range for this feature data
            type_id_start = int(feat_info[0])
            type_id_end = int(feat_info[1])
            begin_global_id = type_id_map[type_name][0]
            gid_start = begin_global_id + type_id_start
            gid_end = begin_global_id + type_id_end

            # Check if features exist for this type_name + feat_name.
            # This check should always pass, because feature_tids are built
            # by reading the input metadata json file for existing features.
575
            assert feat_key in feature_data
576

577
            for local_part_id in range(num_parts // world_size):
578
                featdata_key = feature_data[feat_key]
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
                own_features, own_global_ids = exchange_feature(
                    rank,
                    data,
                    id_lookup,
                    feat_type,
                    feat_key,
                    featdata_key,
                    gid_start,
                    gid_end,
                    type_id_start,
                    type_id_end,
                    local_part_id,
                    world_size,
                    num_parts,
                    own_features,
                    own_global_ids,
                )
596
597

    end = timer()
598
599
600
    logging.info(
        f"[Rank: {rank}] Total time for feature exchange: {timedelta(seconds = end - start)}"
    )
601
    return own_features, own_global_ids
602

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

def exchange_graph_data(
    rank,
    world_size,
    num_parts,
    node_features,
    edge_features,
    node_feat_tids,
    edge_feat_tids,
    edge_data,
    id_lookup,
    ntypes_ntypeid_map,
    ntypes_gnid_range_map,
    etypes_geid_range_map,
    ntid_ntype_map,
    schema_map,
):
620
    """
621
    Wrapper function which is used to shuffle graph data on all the processes.
622

623
    Parameters:
624
625
626
627
    -----------
    rank : int
        rank of the current process
    world_size : int
628
        total no. of participating processes.
629
630
    num_parts : int
        total no. of graph partitions.
631
    node_feautres : dicitonary
632
633
        dictionry where node_features are stored and this information is read from the appropriate
        node features file which belongs to the current process
634
635
636
    edge_features : dictionary
        dictionary where edge_features are stored. This information is read from the appropriate
        edge feature files whose ownership is assigned to the current process
637
638
639
640
641
    node_feat_tids: dictionary
        in which keys are node-type names and values are triplets. Each triplet has node-feature name
        and the starting and ending type ids of the node-feature data read from the corresponding
        node feature data file read by current process. Each node type may have several features and
        hence each key may have several triplets.
642
643
    edge_feat_tids : dictionary
        a dictionary in which keys are edge-type names and values are triplets of the format
644
        <feat-name, start-per-type-idx, end-per-type-idx>. This triplet is used to identify
645
        the chunk of feature data for which current process is responsible for
646
    edge_data : dictionary
647
        dictionary which is used to store edge information as read from appropriate files assigned
648
        to each process.
649
    id_lookup : instance of class DistLookupService
650
       Distributed lookup service used to map global-nids to respective partition-ids and
651
       shuffle-global-nids
652
    ntypes_ntypeid_map : dictionary
653
        mappings between node type names and node type ids
654
    ntypes_gnid_range_map : dictionary
655
        mapping between node type names and global_nids which belong to the keys in this dictionary
656
657
658
    etypes_geid_range_map : dictionary
        mapping between edge type names and global_eids which are assigned to the edges of this
        edge_type
659
    ntid_ntype_map : dictionary
660
        mapping between node type id and no of nodes which belong to each node_type_id
661
662
    schema_map : dictionary
        is the data structure read from the metadata json file for the input graph
663
664
665

    Returns:
    --------
666
    dictionary :
667
668
        the input argument, node_data dictionary, is updated with the node data received from other processes
        in the world. The node data is received by each rank in the process of data shuffling.
669
670
    dictionary :
        node features dictionary which has node features for the nodes which are owned by the current
671
        process
672
673
    dictionary :
        list of global_nids for the nodes whose node features are received when node features shuffling was
674
        performed in the `exchange_features` function call
675
    dictionary :
676
677
        the input argument, edge_data dictionary, is updated with the edge data received from other processes
        in the world. The edge data is received by each rank in the process of data shuffling.
678
    dictionary :
679
680
681
682
683
        edge features dictionary which has edge features. These destination end points of these edges
        are owned by the current process
    dictionary :
        list of global_eids for the edges whose edge features are received when edge features shuffling
        was performed in the `exchange_features` function call
684
    """
685
    memory_snapshot("ShuffleNodeFeaturesBegin: ", rank)
686
687
688
689
690
691
692
693
694
695
696
    rcvd_node_features, rcvd_global_nids = exchange_features(
        rank,
        world_size,
        num_parts,
        node_feat_tids,
        ntypes_gnid_range_map,
        id_lookup,
        node_features,
        constants.STR_NODE_FEATURES,
        None,
    )
697
    memory_snapshot("ShuffleNodeFeaturesComplete: ", rank)
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    logging.info(f"[Rank: {rank}] Done with node features exchange.")

    rcvd_edge_features, rcvd_global_eids = exchange_features(
        rank,
        world_size,
        num_parts,
        edge_feat_tids,
        etypes_geid_range_map,
        id_lookup,
        edge_features,
        constants.STR_EDGE_FEATURES,
        edge_data,
    )
    logging.info(f"[Rank: {rank}] Done with edge features exchange.")
712

713
714
715
    node_data = gen_node_data(
        rank, world_size, num_parts, id_lookup, ntid_ntype_map, schema_map
    )
716
    memory_snapshot("NodeDataGenerationComplete: ", rank)
717

718
719
720
    edge_data = exchange_edge_data(
        rank, world_size, num_parts, edge_data, id_lookup
    )
721
    memory_snapshot("ShuffleEdgeDataComplete: ", rank)
722
723
724
725
726
727
728
729
730
    return (
        node_data,
        rcvd_node_features,
        rcvd_global_nids,
        edge_data,
        rcvd_edge_features,
        rcvd_global_eids,
    )

731

732
def read_dataset(rank, world_size, id_lookup, params, schema_map):
733
734
    """
    This function gets the dataset and performs post-processing on the data which is read from files.
735
    Additional information(columns) are added to nodes metadata like owner_process, global_nid which
736
737
    are later used in processing this information. For edge data, which is now a dictionary, we add new columns
    like global_edge_id and owner_process. Augmenting these data structure helps in processing these data structures
738
    when data shuffling is performed.
739
740
741
742
743

    Parameters:
    -----------
    rank : int
        rank of the current process
744
    world_size : int
745
        total no. of processes instantiated
746
    id_lookup : instance of class DistLookupService
747
       Distributed lookup service used to map global-nids to respective partition-ids and
748
       shuffle-global-nids
749
    params : argparser object
750
        argument parser object to access command line arguments
751
752
    schema_map : dictionary
        dictionary created by reading the input graph metadata json file
753

754
    Returns :
755
756
    ---------
    dictionary
757
758
        in which keys are node-type names and values are are tuples representing the range of ids
        for nodes to be read by the current process
759
760
    dictionary
        node features which is a dictionary where keys are feature names and values are feature
761
        data as multi-dimensional tensors
762
763
764
765
766
    dictionary
        in which keys are node-type names and values are triplets. Each triplet has node-feature name
        and the starting and ending type ids of the node-feature data read from the corresponding
        node feature data file read by current process. Each node type may have several features and
        hence each key may have several triplets.
767
    dictionary
768
769
        edge data information is read from edges.txt and additional columns are added such as
        owner process for each edge.
770
771
    dictionary
        edge features which is also a dictionary, similar to node features dictionary
772
773
774
775
    dictionary
        a dictionary in which keys are edge-type names and values are tuples indicating the range of ids
        for edges read by the current process.
    dictionary
776
        a dictionary in which keys are edge-type names and values are triplets,
777
778
        (edge-feature-name, start_type_id, end_type_id). These type_ids are indices in the edge-features
        read by the current process. Note that each edge-type may have several edge-features.
779
780
    """
    edge_features = {}
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
    # node_tids, node_features, edge_datadict, edge_tids
    (
        node_tids,
        node_features,
        node_feat_tids,
        edge_data,
        edge_tids,
        edge_features,
        edge_feat_tids,
    ) = get_dataset(
        params.input_dir,
        params.graph_name,
        rank,
        world_size,
        params.num_parts,
        schema_map,
    )
    logging.info(f"[Rank: {rank}] Done reading dataset {params.input_dir}")
799

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
    edge_data = augment_edge_data(
        edge_data, id_lookup, edge_tids, rank, world_size, params.num_parts
    )
    logging.info(
        f"[Rank: {rank}] Done augmenting edge_data: {len(edge_data)}, {edge_data[constants.GLOBAL_SRC_ID].shape}"
    )

    return (
        node_tids,
        node_features,
        node_feat_tids,
        edge_data,
        edge_features,
        edge_tids,
        edge_feat_tids,
    )
816
817


818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
def reorder_data(num_parts, world_size, data, key):
    """
    Auxiliary function used to sort node and edge data for the input graph.

    Parameters:
    -----------
    num_parts : int
        total no. of partitions
    world_size : int
        total number of nodes used in this execution
    data : dictionary
        which is used to store the node and edge data for the input graph
    key : string
        specifies the column which is used to determine the sort order for
        the remaining columns

    Returns:
    --------
    dictionary
        same as the input dictionary, but with reordered columns (values in
        the dictionary), as per the np.argsort results on the column specified
        by the ``key`` column
    """
    for local_part_id in range(num_parts // world_size):
        sorted_idx = data[key + "/" + str(local_part_id)].argsort()
        for k, v in data.items():
            tokens = k.split("/")
            assert len(tokens) == 2
            if tokens[1] == str(local_part_id):
                data[k] = v[sorted_idx]
        sorted_idx = None
    gc.collect()
    return data


853
854
def gen_dist_partitions(rank, world_size, params):
    """
855
856
    Function which will be executed by all Gloo processes to begin execution of the pipeline.
    This function expects the input dataset is split across multiple file format.
857

858
    Input dataset and its file structure is described in metadata json file which is also part of the
859
860
    input dataset. On a high-level, this metadata json file contains information about the following items
    a) Nodes metadata, It is assumed that nodes which belong to each node-type are split into p files
861
862
       (wherer `p` is no. of partitions).
    b) Similarly edge metadata contains information about edges which are split into p-files.
863
864
865
866
867
    c) Node and Edge features, it is also assumed that each node (and edge) feature, if present, is also
       split into `p` files.

    For example, a sample metadata json file might be as follows: :
    (In this toy example, we assume that we have "m" node-types, "k" edge types, and for node_type = ntype0-name
868
     we have two features namely feat0-name and feat1-name. Please note that the node-features are also split into
869
870
871
872
     `p` files. This will help in load-balancing during data-shuffling phase).

    Terminology used to identify any particular "id" assigned to nodes, edges or node features. Prefix "global" is
    used to indicate that this information is either read from the input dataset or autogenerated based on the information
873
874
875
876
    read from input dataset files. Prefix "type" is used to indicate a unique id assigned to either nodes or edges.
    For instance, type_node_id means that a unique id, with a given node type,  assigned to a node. And prefix "shuffle"
    will be used to indicate a unique id, across entire graph, assigned to either a node or an edge. For instance,
    SHUFFLE_GLOBAL_NID means a unique id which is assigned to a node after the data shuffle is completed.
877

878
879
    Some high-level notes on the structure of the metadata json file.
    1. path(s) mentioned in the entries for nodes, edges and node-features files can be either absolute or relative.
880
       if these paths are relative, then it is assumed that they are relative to the folder from which the execution is
881
882
883
884
       launched.
    2. The id_startx and id_endx represent the type_node_id and type_edge_id respectively for nodes and edge data. This
       means that these ids should match the no. of nodes/edges read from any given file. Since these are type_ids for
       the nodes and edges in any given file, their global_ids can be easily computed as well.
885
886

    {
887
888
889
890
        "graph_name" : xyz,
        "node_type" : ["ntype0-name", "ntype1-name", ....], #m node types
        "num_nodes_per_chunk" : [
            [a0, a1, ...a<p-1>], #p partitions
891
            [b0, b1, ... b<p-1>],
892
893
894
895
896
897
            ....
            [c0, c1, ..., c<p-1>] #no, of node types
        ],
        "edge_type" : ["src_ntype:edge_type:dst_ntype", ....], #k edge types
        "num_edges_per_chunk" : [
            [a0, a1, ...a<p-1>], #p partitions
898
            [b0, b1, ... b<p-1>],
899
900
901
            ....
            [c0, c1, ..., c<p-1>] #no, of edge types
        ],
902
903
        "node_data" : {
            "ntype0-name" : {
904
905
906
907
908
909
                "feat0-name" : {
                    "format" : {"name": "numpy"},
                    "data" :   [ #list of lists
                        ["<path>/feat-0.npy", 0, id_end0],
                        ["<path>/feat-1.npy", id_start1, id_end1],
                        ....
910
                        ["<path>/feat-<p-1>.npy", id_start<p-1>, id_end<p-1>]
911
912
913
                    ]
                },
                "feat1-name" : {
914
                    "format" : {"name": "numpy"},
915
916
917
918
                    "data" : [ #list of lists
                        ["<path>/feat-0.npy", 0, id_end0],
                        ["<path>/feat-1.npy", id_start1, id_end1],
                        ....
919
                        ["<path>/feat-<p-1>.npy", id_start<p-1>, id_end<p-1>]
920
921
                    ]
                }
922
923
            }
        },
924
        "edges": { #k edge types
925
            "src_ntype:etype0-name:dst_ntype" : {
926
                "format": {"name" : "csv", "delimiter" : " "},
927
928
929
930
931
932
                "data" : [
                    ["<path>/etype0-name-0.txt", 0, id_end0], #These are type_edge_ids for edges of this type
                    ["<path>/etype0-name-1.txt", id_start1, id_end1],
                    ...,
                    ["<path>/etype0-name-<p-1>.txt", id_start<p-1>, id_end<p-1>]
                ]
933
934
            },
            ...,
935
            "src_ntype:etype<k-1>-name:dst_ntype" : {
936
                "format": {"name" : "csv", "delimiter" : " "},
937
938
939
940
941
942
                "data" : [
                    ["<path>/etype<k-1>-name-0.txt", 0, id_end0],
                    ["<path>/etype<k-1>-name-1.txt", id_start1, id_end1],
                    ...,
                    ["<path>/etype<k-1>-name-<p-1>.txt", id_start<p-1>, id_end<p-1>]
                ]
943
944
            },
        },
945
    }
946

947
    The function performs the following steps:
948
    1. Reads the metis partitions to identify the owner process of all the nodes in the entire graph.
949
    2. Reads the input data set, each partitipating process will map to a single file for the edges,
950
951
952
        node-features and edge-features for each node-type and edge-types respectively. Using nodes metadata
        information, nodes which are owned by a given process are generated to optimize communication to some
        extent.
953
    3. Now each process shuffles the data by identifying the respective owner processes using metis
954
955
956
957
        partitions.
        a. To identify owner processes for nodes, metis partitions will be used.
        b. For edges, the owner process of the destination node will be the owner of the edge as well.
        c. For node and edge features, identifying the owner process is a little bit involved.
958
959
            For this purpose, graph metadata json file is used to first map the locally read node features
            to their global_nids. Now owner process is identified using metis partitions for these global_nids
960
961
962
963
964
965
966
            to retrieve shuffle_global_nids. A similar process is used for edge_features as well.
        d. After all the data shuffling is done, the order of node-features may be different when compared to
            their global_type_nids. Node- and edge-data are ordered by node-type and edge-type respectively.
            And now node features and edge features are re-ordered to match the order of their node- and edge-types.
    4. Last step is to create the DGL objects with the data present on each of the processes.
        a. DGL objects for nodes, edges, node- and edge- features.
        b. Metadata is gathered from each process to create the global metadata json file, by process rank = 0.
967
968
969
970
971
972
973
974
975
976
977

    Parameters:
    ----------
    rank : int
        integer representing the rank of the current process in a typical distributed implementation
    world_size : int
        integer representing the total no. of participating processes in a typical distributed implementation
    params : argparser object
        this object, key value pairs, provides access to the command line arguments from the runtime environment
    """
    global_start = timer()
978
979
980
    logging.info(
        f"[Rank: {rank}] Starting distributed data processing pipeline..."
    )
981
    memory_snapshot("Pipeline Begin: ", rank)
982
    # init processing
983
984
    schema_map = read_json(os.path.join(params.input_dir, params.schema))

985
986
987
988
989
990
991
    # Initialize distributed lookup service for partition-id and shuffle-global-nids mappings
    # for global-nids
    _, global_nid_ranges = get_idranges(
        schema_map[constants.STR_NODE_TYPE],
        schema_map[constants.STR_NUM_NODES_PER_CHUNK],
        params.num_parts,
    )
992
    id_map = dgl.distributed.id_map.IdMap(global_nid_ranges)
993
994
995
996

    # The resources, which are node-id to partition-id mappings, are split
    # into `world_size` number of parts, where each part can be mapped to
    # each physical node.
997
998
999
1000
1001
1002
    id_lookup = DistLookupService(
        os.path.join(params.input_dir, params.partitions_dir),
        schema_map[constants.STR_NODE_TYPE],
        id_map,
        rank,
        world_size,
1003
        params.num_parts,
1004
    )
1005
1006

    ntypes_ntypeid_map, ntypes, ntypeid_ntypes_map = get_node_types(schema_map)
1007
    etypes_etypeid_map, etypes, etypeid_etypes_map = get_edge_types(schema_map)
1008
1009
1010
    logging.info(
        f"[Rank: {rank}] Initialized metis partitions and node_types map..."
    )
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
    # read input graph files and augment these datastructures with
    # appropriate information (global_nid and owner process) for node and edge data
    (
        node_tids,
        node_features,
        node_feat_tids,
        edge_data,
        edge_features,
        edge_tids,
        edge_feat_tids,
    ) = read_dataset(rank, world_size, id_lookup, params, schema_map)
    logging.info(
        f"[Rank: {rank}] Done augmenting file input data with auxilary columns"
    )
1026
    memory_snapshot("DatasetReadComplete: ", rank)
1027

1028
1029
1030
    # send out node and edge data --- and appropriate features.
    # this function will also stitch the data recvd from other processes
    # and return the aggregated data
1031
    ntypes_gnid_range_map = get_gnid_range_map(node_tids)
1032
    etypes_geid_range_map = get_gnid_range_map(edge_tids)
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
    (
        node_data,
        rcvd_node_features,
        rcvd_global_nids,
        edge_data,
        rcvd_edge_features,
        rcvd_global_eids,
    ) = exchange_graph_data(
        rank,
        world_size,
        params.num_parts,
        node_features,
        edge_features,
        node_feat_tids,
        edge_feat_tids,
        edge_data,
        id_lookup,
        ntypes_ntypeid_map,
        ntypes_gnid_range_map,
        etypes_geid_range_map,
        ntypeid_ntypes_map,
        schema_map,
    )
1056
    gc.collect()
1057
    logging.info(f"[Rank: {rank}] Done with data shuffling...")
1058
    memory_snapshot("DataShuffleComplete: ", rank)
1059

1060
    # sort node_data by ntype
1061
1062
1063
    node_data = reorder_data(
        params.num_parts, world_size, node_data, constants.NTYPE_ID
    )
1064
    logging.info(f"[Rank: {rank}] Sorted node_data by node_type")
1065
    memory_snapshot("NodeDataSortComplete: ", rank)
1066

1067
1068
1069
1070
1071
    # resolve global_ids for nodes
    assign_shuffle_global_nids_nodes(
        rank, world_size, params.num_parts, node_data
    )
    logging.info(f"[Rank: {rank}] Done assigning global-ids to nodes...")
1072
    memory_snapshot("ShuffleGlobalID_Nodes_Complete: ", rank)
1073

1074
    # shuffle node feature according to the node order on each rank.
1075
1076
1077
    for ntype_name in ntypes:
        featnames = get_ntype_featnames(ntype_name, schema_map)
        for featname in featnames:
1078
1079
1080
1081
1082
1083
1084
            # if a feature name exists for a node-type, then it should also have
            # feature data as well. Hence using the assert statement.
            for local_part_id in range(params.num_parts // world_size):
                feature_key = (
                    ntype_name + "/" + featname + "/" + str(local_part_id)
                )
                assert feature_key in rcvd_global_nids
1085
                global_nids = rcvd_global_nids[feature_key]
1086

1087
1088
1089
1090
1091
1092
1093
1094
                _, idx1, _ = np.intersect1d(
                    node_data[constants.GLOBAL_NID + "/" + str(local_part_id)],
                    global_nids,
                    return_indices=True,
                )
                shuffle_global_ids = node_data[
                    constants.SHUFFLE_GLOBAL_NID + "/" + str(local_part_id)
                ][idx1]
1095
                feature_idx = shuffle_global_ids.argsort()
1096

1097
1098
1099
                rcvd_node_features[feature_key] = rcvd_node_features[
                    feature_key
                ][feature_idx]
1100
    memory_snapshot("ReorderNodeFeaturesComplete: ", rank)
1101

1102
1103
1104
1105
1106
1107
    # Sort edge_data by etype
    edge_data = reorder_data(
        params.num_parts, world_size, edge_data, constants.ETYPE_ID
    )
    logging.info(f"[Rank: {rank}] Sorted edge_data by edge_type")
    memory_snapshot("EdgeDataSortComplete: ", rank)
1108

1109
1110
1111
1112
    shuffle_global_eid_offsets = assign_shuffle_global_nids_edges(
        rank, world_size, params.num_parts, edge_data
    )
    logging.info(f"[Rank: {rank}] Done assigning global_ids to edges ...")
1113
    memory_snapshot("ShuffleGlobalID_Edges_Complete: ", rank)
1114

1115
    # Shuffle edge features according to the edge order on each rank.
1116
1117
1118
    for etype_name in etypes:
        featnames = get_etype_featnames(etype_name, schema_map)
        for featname in featnames:
1119
1120
1121
1122
            for local_part_id in range(params.num_parts // world_size):
                feature_key = (
                    etype_name + "/" + featname + "/" + str(local_part_id)
                )
1123
1124
                assert feature_key in rcvd_global_eids
                global_eids = rcvd_global_eids[feature_key]
1125

1126
1127
1128
1129
1130
1131
1132
1133
                _, idx1, _ = np.intersect1d(
                    edge_data[constants.GLOBAL_EID + "/" + str(local_part_id)],
                    global_eids,
                    return_indices=True,
                )
                shuffle_global_ids = edge_data[
                    constants.SHUFFLE_GLOBAL_EID + "/" + str(local_part_id)
                ][idx1]
1134
                feature_idx = shuffle_global_ids.argsort()
1135

1136
1137
1138
                rcvd_edge_features[feature_key] = rcvd_edge_features[
                    feature_key
                ][feature_idx]
1139

1140
1141
1142
1143
1144
1145
1146
    # determine global-ids for edge end-points
    edge_data = lookup_shuffle_global_nids_edges(
        rank, world_size, params.num_parts, edge_data, id_lookup, node_data
    )
    logging.info(
        f"[Rank: {rank}] Done resolving orig_node_id for local node_ids..."
    )
1147
    memory_snapshot("ShuffleGlobalID_Lookup_Complete: ", rank)
1148

1149
1150
1151
1152
    def prepare_local_data(src_data, local_part_id):
        local_data = {}
        for k, v in src_data.items():
            tokens = k.split("/")
1153
            if tokens[len(tokens) - 1] == str(local_part_id):
1154
1155
1156
                local_data["/".join(tokens[:-1])] = v
        return local_data

1157
    # create dgl objects here
1158
    output_meta_json = {}
1159
    start = timer()
1160

1161
1162
    graph_formats = None
    if params.graph_formats:
1163
1164
1165
        graph_formats = params.graph_formats.split(",")

    for local_part_id in range(params.num_parts // world_size):
1166
        num_edges = shuffle_global_eid_offsets[local_part_id]
1167
1168
1169
1170
1171
1172
        node_count = len(
            node_data[constants.NTYPE_ID + "/" + str(local_part_id)]
        )
        edge_count = len(
            edge_data[constants.ETYPE_ID + "/" + str(local_part_id)]
        )
1173
1174
        local_node_data = prepare_local_data(node_data, local_part_id)
        local_edge_data = prepare_local_data(edge_data, local_part_id)
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
        (
            graph_obj,
            ntypes_map_val,
            etypes_map_val,
            ntypes_map,
            etypes_map,
            orig_nids,
            orig_eids,
        ) = create_dgl_object(
            schema_map,
            rank + local_part_id * world_size,
            local_node_data,
            local_edge_data,
            num_edges,
            params.save_orig_nids,
            params.save_orig_eids,
        )
1192
        sort_etypes = len(etypes_map) > 1
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
        local_node_features = prepare_local_data(
            rcvd_node_features, local_part_id
        )
        local_edge_features = prepare_local_data(
            rcvd_edge_features, local_part_id
        )
        write_dgl_objects(
            graph_obj,
            local_node_features,
            local_edge_features,
            params.output,
            rank + (local_part_id * world_size),
            orig_nids,
            orig_eids,
            graph_formats,
            sort_etypes,
        )
1210
1211
        memory_snapshot("DiskWriteDGLObjectsComplete: ", rank)

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
        # get the meta-data
        json_metadata = create_metadata_json(
            params.graph_name,
            node_count,
            edge_count,
            local_part_id * world_size + rank,
            params.num_parts,
            ntypes_map_val,
            etypes_map_val,
            ntypes_map,
            etypes_map,
            params.output,
        )
        output_meta_json[
            "local-part-id-" + str(local_part_id * world_size + rank)
        ] = json_metadata
1228
        memory_snapshot("MetadataCreateComplete: ", rank)
1229

1230
1231
    if rank == 0:
        # get meta-data from all partitions and merge them on rank-0
1232
1233
        metadata_list = gather_metadata_json(output_meta_json, rank, world_size)
        metadata_list[0] = output_meta_json
1234
1235
1236
1237
1238
1239
1240
        write_metadata_json(
            metadata_list,
            params.output,
            params.graph_name,
            world_size,
            params.num_parts,
        )
1241
    else:
1242
        # send meta-data to Rank-0 process
1243
        gather_metadata_json(output_meta_json, rank, world_size)
1244
    end = timer()
1245
1246
1247
    logging.info(
        f"[Rank: {rank}] Time to create dgl objects: {timedelta(seconds = end - start)}"
    )
1248
    memory_snapshot("MetadataWriteComplete: ", rank)
1249
1250

    global_end = timer()
1251
1252
1253
    logging.info(
        f"[Rank: {rank}] Total execution time of the program: {timedelta(seconds = global_end - global_start)}"
    )
1254
    memory_snapshot("PipelineComplete: ", rank)
1255

1256

1257
def single_machine_run(params):
1258
    """Main function for distributed implementation on a single machine
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269

    Parameters:
    -----------
    params : argparser object
        Argument Parser structure with pre-determined arguments as defined
        at the bottom of this file.
    """
    log_params(params)
    processes = []
    mp.set_start_method("spawn")

1270
1271
    # Invoke `target` function from each of the spawned process for distributed
    # implementation
1272
    for rank in range(params.world_size):
1273
1274
1275
1276
        p = mp.Process(
            target=run,
            args=(rank, params.world_size, gen_dist_partitions, params),
        )
1277
1278
1279
1280
1281
1282
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

1283

1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
def run(rank, world_size, func_exec, params, backend="gloo"):
    """
    Init. function which is run by each process in the Gloo ProcessGroup

    Parameters:
    -----------
    rank : integer
        rank of the process
    world_size : integer
        number of processes configured in the Process Group
    proc_exec : function name
        function which will be invoked which has the logic for each process in the group
    params : argparser object
        argument parser object to access the command line arguments
    backend : string
        string specifying the type of backend to use for communication
    """
1301
1302
    os.environ["MASTER_ADDR"] = "127.0.0.1"
    os.environ["MASTER_PORT"] = "29500"
1303

1304
1305
1306
1307
1308
1309
1310
    # create Gloo Process Group
    dist.init_process_group(
        backend,
        rank=rank,
        world_size=world_size,
        timeout=timedelta(seconds=5 * 60),
    )
1311

1312
    # Invoke the main function to kick-off each process
1313
1314
    func_exec(rank, world_size, params)

1315

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
def multi_machine_run(params):
    """
    Function to be invoked when executing data loading pipeline on multiple machines

    Parameters:
    -----------
    params : argparser object
        argparser object providing access to command line arguments.
    """
    rank = int(os.environ["RANK"])

1327
    # init the gloo process group here.
1328
    dist.init_process_group(
1329
1330
1331
1332
1333
1334
        backend="gloo",
        rank=rank,
        world_size=params.world_size,
        timeout=timedelta(seconds=params.process_group_timeout),
    )
    logging.info(f"[Rank: {rank}] Done with process group initialization...")
1335

1336
    # invoke the main function here.
1337
    gen_dist_partitions(rank, params.world_size, params)
1338
1339
1340
    logging.info(
        f"[Rank: {rank}] Done with Distributed data processing pipeline processing."
    )