gcn_cv_sc.py 9.23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import argparse, time, math
import numpy as np
import mxnet as mx
from mxnet import gluon
import dgl
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data


class NodeUpdate(gluon.Block):
    def __init__(self, layer_id, in_feats, out_feats, dropout, activation=None, test=False, concat=False):
        super(NodeUpdate, self).__init__()
        self.layer_id = layer_id
        self.dropout = dropout
        self.test = test
        self.concat = concat
        with self.name_scope():
            self.dense = gluon.nn.Dense(out_feats, in_units=in_feats)
            self.activation = activation

    def forward(self, node):
        h = node.data['h']
24
        norm = node.data['norm']
25
26
27
28
29
        if self.test:
            h = h * norm
        else:
            agg_history_str = 'agg_h_{}'.format(self.layer_id-1)
            agg_history = node.data[agg_history_str]
30
            subg_norm = node.data['subg_norm']
31
            # control variate
32
            h = h * subg_norm + agg_history * norm
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            if self.dropout:
                h = mx.nd.Dropout(h, p=self.dropout)
        h = self.dense(h)
        if self.concat:
            h = mx.nd.concat(h, self.activation(h))
        elif self.activation:
            h = self.activation(h)
        return {'activation': h}


class GCNSampling(gluon.Block):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 **kwargs):
        super(GCNSampling, self).__init__(**kwargs)
        self.dropout = dropout
        self.n_layers = n_layers
        with self.name_scope():
            self.layers = gluon.nn.Sequential()
            # input layer
            self.dense = gluon.nn.Dense(n_hidden, in_units=in_feats)
            self.activation = activation
            # hidden layers
            for i in range(1, n_layers):
                skip_start = (i == self.n_layers-1)
                self.layers.add(NodeUpdate(i, n_hidden, n_hidden, dropout, activation, concat=skip_start))
            # output layer
            self.layers.add(NodeUpdate(n_layers, 2*n_hidden, n_classes, dropout))

    def forward(self, nf):
        h = nf.layers[0].data['preprocess']
        if self.dropout:
            h = mx.nd.Dropout(h, p=self.dropout)
        h = self.dense(h)

        skip_start = (0 == self.n_layers-1)
        if skip_start:
            h = mx.nd.concat(h, self.activation(h))
        else:
            h = self.activation(h)

        for i, layer in enumerate(self.layers):
            new_history = h.copy().detach()
            history_str = 'h_{}'.format(i)
            history = nf.layers[i].data[history_str]
            h = h - history

            nf.layers[i].data['h'] = h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
88
                             fn.sum(msg='m', out='h'),
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
                             layer)
            h = nf.layers[i+1].data.pop('activation')
            # update history
            if i < nf.num_layers-1:
                nf.layers[i].data[history_str] = new_history

        return h


class GCNInfer(gluon.Block):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 **kwargs):
        super(GCNInfer, self).__init__(**kwargs)
        self.n_layers = n_layers
        with self.name_scope():
            self.layers = gluon.nn.Sequential()
            # input layer
            self.dense = gluon.nn.Dense(n_hidden, in_units=in_feats)
            self.activation = activation
            # hidden layers
            for i in range(1, n_layers):
                skip_start = (i == self.n_layers-1)
                self.layers.add(NodeUpdate(i, n_hidden, n_hidden, 0, activation, True, concat=skip_start))
            # output layer
            self.layers.add(NodeUpdate(n_layers, 2*n_hidden, n_classes, 0, None, True))


    def forward(self, nf):
        h = nf.layers[0].data['preprocess']
        h = self.dense(h)

        skip_start = (0 == self.n_layers-1)
        if skip_start:
            h = mx.nd.concat(h, self.activation(h))
        else:
            h = self.activation(h)

        for i, layer in enumerate(self.layers):
            nf.layers[i].data['h'] = h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             fn.sum(msg='m', out='h'),
                             layer)
            h = nf.layers[i+1].data.pop('activation')

        return h


142
143
144
def gcn_cv_train(g, ctx, args, n_classes, train_nid, test_nid, n_test_samples):
    features = g.ndata['features']
    labels = g.ndata['labels']
145
146
147
148
    in_feats = features.shape[1]

    norm = mx.nd.expand_dims(1./g.in_degrees().astype('float32'), 1)
    g.ndata['norm'] = norm.as_in_context(ctx)
149
150
151
    degs = g.in_degrees().astype('float32').asnumpy()
    degs[degs > args.num_neighbors] = args.num_neighbors
    g.ndata['subg_norm'] = mx.nd.expand_dims(mx.nd.array(1./degs, ctx=ctx), 1)
152
153
154
155
156

    g.update_all(fn.copy_src(src='features', out='m'),
                 fn.sum(msg='m', out='preprocess'),
                 lambda node : {'preprocess': node.data['preprocess'] * node.data['norm']})

157
    n_layers = args.n_layers
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    for i in range(n_layers):
        g.ndata['h_{}'.format(i)] = mx.nd.zeros((features.shape[0], args.n_hidden), ctx=ctx)
    g.ndata['h_{}'.format(n_layers-1)] = mx.nd.zeros((features.shape[0], 2*args.n_hidden), ctx=ctx)

    model = GCNSampling(in_feats,
                        args.n_hidden,
                        n_classes,
                        n_layers,
                        mx.nd.relu,
                        args.dropout,
                        prefix='GCN')

    model.initialize(ctx=ctx)

    loss_fcn = gluon.loss.SoftmaxCELoss()

    infer_model = GCNInfer(in_feats,
                           args.n_hidden,
                           n_classes,
                           n_layers,
                           mx.nd.relu,
                           prefix='GCN')

    infer_model.initialize(ctx=ctx)

    # use optimizer
    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
                            {'learning_rate': args.lr, 'wd': args.weight_decay},
                            kvstore=mx.kv.create('local'))

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
192
        for nf in dgl.contrib.sampling.NeighborSampler(g, args.batch_size,
193
                                                       args.num_neighbors,
194
                                                       neighbor_type='in',
195
                                                       num_workers=32,
196
197
198
                                                       shuffle=True,
                                                       num_hops=n_layers,
                                                       seed_nodes=train_nid):
199
200
201
            for i in range(n_layers):
                agg_history_str = 'agg_h_{}'.format(i)
                g.pull(nf.layer_parent_nid(i+1), fn.copy_src(src='h_{}'.format(i), out='m'),
202
                       fn.sum(msg='m', out=agg_history_str))
203
204
205

            node_embed_names = [['preprocess', 'h_0']]
            for i in range(1, n_layers):
206
207
                node_embed_names.append(['h_{}'.format(i), 'agg_h_{}'.format(i-1), 'subg_norm', 'norm'])
            node_embed_names.append(['agg_h_{}'.format(n_layers-1), 'subg_norm', 'norm'])
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

            nf.copy_from_parent(node_embed_names=node_embed_names)
            # forward
            with mx.autograd.record():
                pred = model(nf)
                batch_nids = nf.layer_parent_nid(-1).as_in_context(ctx)
                batch_labels = labels[batch_nids]
                loss = loss_fcn(pred, batch_labels)
                loss = loss.sum() / len(batch_nids)

            loss.backward()
            trainer.step(batch_size=1)

            node_embed_names = [['h_{}'.format(i)] for i in range(n_layers)]
            node_embed_names.append([])

            nf.copy_to_parent(node_embed_names=node_embed_names)

        infer_params = infer_model.collect_params()

        for key in infer_params:
            idx = trainer._param2idx[key]
            trainer._kvstore.pull(idx, out=infer_params[key].data())

        num_acc = 0.
233
        num_tests = 0
234

235
236
237
238
239
        for nf in dgl.contrib.sampling.NeighborSampler(g, args.test_batch_size,
                                                       g.number_of_nodes(),
                                                       neighbor_type='in',
                                                       num_hops=n_layers,
                                                       seed_nodes=test_nid):
240
241
242
243
244
245
246
247
248
            node_embed_names = [['preprocess']]
            for i in range(n_layers):
                node_embed_names.append(['norm'])

            nf.copy_from_parent(node_embed_names=node_embed_names)
            pred = infer_model(nf)
            batch_nids = nf.layer_parent_nid(-1).as_in_context(ctx)
            batch_labels = labels[batch_nids]
            num_acc += (pred.argmax(axis=1) == batch_labels).sum().asscalar()
249
250
251
252
            num_tests += nf.layer_size(-1)
            break

        print("Test Accuracy {:.4f}". format(num_acc/num_tests))
253
254