README.md 1.71 KB
Newer Older
Ziyue Huang's avatar
Ziyue Huang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Stochastic Training for Graph Convolutional Networks

* Paper: [Control Variate](https://arxiv.org/abs/1710.10568)
* Paper: [Skip Connection](https://arxiv.org/abs/1809.05343)
* Author's code: [https://github.com/thu-ml/stochastic_gcn](https://github.com/thu-ml/stochastic_gcn)

Dependencies
------------
- PyTorch 0.4.1+
- requests

``bash
pip install torch requests
``

### Neighbor Sampling & Skip Connection
cora: test accuracy ~83% with --num-neighbors 2, ~84% by training on the full graph
```
python gcn_ns_sc.py --dataset cora --self-loop --num-neighbors 2 --batch-size 1000000 --test-batch-size 1000000 --gpu 0
```

citeseer: test accuracy ~69% with --num-neighbors 2, ~70% by training on the full graph
```
python gcn_ns_sc.py --dataset citeseer --self-loop --num-neighbors 2 --batch-size 1000000 --test-batch-size 1000000 --gpu 0
```

pubmed: test accuracy ~76% with --num-neighbors 3, ~77% by training on the full graph
```
python gcn_ns_sc.py --dataset pubmed --self-loop --num-neighbors 3 --batch-size 1000000 --test-batch-size 1000000 --gpu 0
```

### Control Variate & Skip Connection
cora: test accuracy ~84% with --num-neighbors 1, ~84% by training on the full graph
```
python gcn_cv_sc.py --dataset cora --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 --gpu 0
```

citeseer: test accuracy ~69% with --num-neighbors 1, ~70% by training on the full graph
```
python gcn_cv_sc.py --dataset citeseer --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 --gpu 0
```

pubmed: test accuracy ~77% with --num-neighbors 1, ~77% by training on the full graph
```
python gcn_cv_sc.py --dataset pubmed --self-loop --num-neighbors 1 --batch-size 1000000 --test-batch-size 1000000 --gpu 0
```