test_dataloader.py 14.9 KB
Newer Older
1
2
3
4
5
import dgl
import backend as F
import unittest
from torch.utils.data import DataLoader
from collections import defaultdict
6
from itertools import product
7

8
def _check_neighbor_sampling_dataloader(g, nids, dl, mode, collator):
9
10
    seeds = defaultdict(list)

11
12
    for item in dl:
        if mode == 'node':
13
            input_nodes, output_nodes, items, blocks = item
14
        elif mode == 'edge':
15
            input_nodes, pair_graph, items, blocks = item
16
17
            output_nodes = pair_graph.ndata[dgl.NID]
        elif mode == 'link':
18
            input_nodes, pair_graph, neg_graph, items, blocks = item
19
20
21
22
            output_nodes = pair_graph.ndata[dgl.NID]
            for ntype in pair_graph.ntypes:
                assert F.array_equal(pair_graph.nodes[ntype].data[dgl.NID], neg_graph.nodes[ntype].data[dgl.NID])

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
        # TODO: check if items match output nodes/edges
        if mode == 'node':
            if len(g.ntypes) > 1:
                for ntype in g.ntypes:
                    if ntype not in items:
                        assert len(output_nodes[ntype]) == 0
                    else:
                        assert F.array_equal(output_nodes[ntype], F.gather_row(collator.nids[ntype], items[ntype]))
            else:
                assert F.array_equal(output_nodes, F.gather_row(collator.nids, items))
        else:
            if len(g.etypes) > 1:
                for etype, eids in collator.eids.items():
                    if etype not in items:
                        assert pair_graph.num_edges(etype=etype) == 0
                    else:
                        assert F.array_equal(pair_graph.edges[etype].data[dgl.EID], F.gather_row(eids, items[etype]))
            else:
                assert F.array_equal(pair_graph.edata[dgl.EID], F.gather_row(collator.eids, items))

43
44
45
46
47
48
49
        if len(g.ntypes) > 1:
            for ntype in g.ntypes:
                assert F.array_equal(input_nodes[ntype], blocks[0].srcnodes[ntype].data[dgl.NID])
                assert F.array_equal(output_nodes[ntype], blocks[-1].dstnodes[ntype].data[dgl.NID])
        else:
            assert F.array_equal(input_nodes, blocks[0].srcdata[dgl.NID])
            assert F.array_equal(output_nodes, blocks[-1].dstdata[dgl.NID])
50

51
52
53
54
55
56
57
        prev_dst = {ntype: None for ntype in g.ntypes}
        for block in blocks:
            for canonical_etype in block.canonical_etypes:
                utype, etype, vtype = canonical_etype
                uu, vv = block.all_edges(order='eid', etype=canonical_etype)
                src = block.srcnodes[utype].data[dgl.NID]
                dst = block.dstnodes[vtype].data[dgl.NID]
58
59
60
61
                assert F.array_equal(
                    block.srcnodes[utype].data['feat'], g.nodes[utype].data['feat'][src])
                assert F.array_equal(
                    block.dstnodes[vtype].data['feat'], g.nodes[vtype].data['feat'][dst])
62
63
64
65
66
67
                if prev_dst[utype] is not None:
                    assert F.array_equal(src, prev_dst[utype])
                u = src[uu]
                v = dst[vv]
                assert F.asnumpy(g.has_edges_between(u, v, etype=canonical_etype)).all()
                eid = block.edges[canonical_etype].data[dgl.EID]
68
69
70
                assert F.array_equal(
                    block.edges[canonical_etype].data['feat'],
                    g.edges[canonical_etype].data['feat'][eid])
71
72
73
74
75
76
77
78
79
                ufound, vfound = g.find_edges(eid, etype=canonical_etype)
                assert F.array_equal(ufound, u)
                assert F.array_equal(vfound, v)
            for ntype in block.dsttypes:
                src = block.srcnodes[ntype].data[dgl.NID]
                dst = block.dstnodes[ntype].data[dgl.NID]
                assert F.array_equal(src[:block.number_of_dst_nodes(ntype)], dst)
                prev_dst[ntype] = dst

80
81
82
83
84
85
86
87
        if mode == 'node':
            for ntype in blocks[-1].dsttypes:
                seeds[ntype].append(blocks[-1].dstnodes[ntype].data[dgl.NID])
        elif mode == 'edge' or mode == 'link':
            for etype in pair_graph.canonical_etypes:
                seeds[etype].append(pair_graph.edges[etype].data[dgl.EID])

    # Check if all nodes/edges are iterated
88
89
    seeds = {k: F.cat(v, 0) for k, v in seeds.items()}
    for k, v in seeds.items():
90
91
92
93
94
95
96
        if k in nids:
            seed_set = set(F.asnumpy(nids[k]))
        elif isinstance(k, tuple) and k[1] in nids:
            seed_set = set(F.asnumpy(nids[k[1]]))
        else:
            continue

97
98
99
100
101
        v_set = set(F.asnumpy(v))
        assert v_set == seed_set

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_neighbor_sampler_dataloader():
102
103
    g = dgl.heterograph({('user', 'follow', 'user'): ([0, 0, 0, 1, 1], [1, 2, 3, 3, 4])}, 
                        {'user': 6}).long()
104
    g = dgl.to_bidirected(g)
105
106
    g.ndata['feat'] = F.randn((6, 8))
    g.edata['feat'] = F.randn((10, 4))
107
108
109
    reverse_eids = F.tensor([5, 6, 7, 8, 9, 0, 1, 2, 3, 4], dtype=F.int64)
    g_sampler1 = dgl.dataloading.MultiLayerNeighborSampler([2, 2], return_eids=True)
    g_sampler2 = dgl.dataloading.MultiLayerFullNeighborSampler(2, return_eids=True)
110
111

    hg = dgl.heterograph({
112
113
114
115
116
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
    }).long()
117
118
119
120
    for ntype in hg.ntypes:
        hg.nodes[ntype].data['feat'] = F.randn((hg.number_of_nodes(ntype), 8))
    for etype in hg.canonical_etypes:
        hg.edges[etype].data['feat'] = F.randn((hg.number_of_edges(etype), 4))
121
122
123
124
125
126
127
128
129
130
131
132
    hg_sampler1 = dgl.dataloading.MultiLayerNeighborSampler(
        [{'play': 1, 'played-by': 1, 'follow': 2, 'followed-by': 1}] * 2, return_eids=True)
    hg_sampler2 = dgl.dataloading.MultiLayerFullNeighborSampler(2, return_eids=True)
    reverse_etypes = {'follow': 'followed-by', 'followed-by': 'follow', 'play': 'played-by', 'played-by': 'play'}

    collators = []
    graphs = []
    nids = []
    modes = []
    for seeds, sampler in product(
            [F.tensor([0, 1, 2, 3, 5], dtype=F.int64), F.tensor([4, 5], dtype=F.int64)],
            [g_sampler1, g_sampler2]):
133
        collators.append(dgl.dataloading.NodeCollator(g, seeds, sampler, return_indices=True))
134
135
136
137
        graphs.append(g)
        nids.append({'user': seeds})
        modes.append('node')

138
        collators.append(dgl.dataloading.EdgeCollator(g, seeds, sampler, return_indices=True))
139
140
141
142
143
        graphs.append(g)
        nids.append({'follow': seeds})
        modes.append('edge')

        collators.append(dgl.dataloading.EdgeCollator(
144
145
            g, seeds, sampler, exclude='reverse_id', reverse_eids=reverse_eids,
            return_indices=True))
146
147
148
149
150
        graphs.append(g)
        nids.append({'follow': seeds})
        modes.append('edge')

        collators.append(dgl.dataloading.EdgeCollator(
151
152
            g, seeds, sampler, negative_sampler=dgl.dataloading.negative_sampler.Uniform(2),
            return_indices=True))
153
154
155
156
157
158
        graphs.append(g)
        nids.append({'follow': seeds})
        modes.append('link')

        collators.append(dgl.dataloading.EdgeCollator(
            g, seeds, sampler, exclude='reverse_id', reverse_eids=reverse_eids,
159
160
            negative_sampler=dgl.dataloading.negative_sampler.Uniform(2),
            return_indices=True))
161
162
163
164
165
166
167
168
        graphs.append(g)
        nids.append({'follow': seeds})
        modes.append('link')

    for seeds, sampler in product(
            [{'user': F.tensor([0, 1, 3, 5], dtype=F.int64), 'game': F.tensor([0, 1, 2], dtype=F.int64)},
             {'user': F.tensor([4, 5], dtype=F.int64), 'game': F.tensor([0, 1, 2], dtype=F.int64)}],
            [hg_sampler1, hg_sampler2]):
169
        collators.append(dgl.dataloading.NodeCollator(hg, seeds, sampler, return_indices=True))
170
171
172
173
174
175
176
177
        graphs.append(hg)
        nids.append(seeds)
        modes.append('node')

    for seeds, sampler in product(
            [{'follow': F.tensor([0, 1, 3, 5], dtype=F.int64), 'play': F.tensor([1, 3], dtype=F.int64)},
             {'follow': F.tensor([4, 5], dtype=F.int64), 'play': F.tensor([1, 3], dtype=F.int64)}],
            [hg_sampler1, hg_sampler2]):
178
        collators.append(dgl.dataloading.EdgeCollator(hg, seeds, sampler, return_indices=True))
179
180
181
182
183
        graphs.append(hg)
        nids.append(seeds)
        modes.append('edge')

        collators.append(dgl.dataloading.EdgeCollator(
184
185
            hg, seeds, sampler, exclude='reverse_types', reverse_etypes=reverse_etypes,
            return_indices=True))
186
187
188
189
190
        graphs.append(hg)
        nids.append(seeds)
        modes.append('edge')

        collators.append(dgl.dataloading.EdgeCollator(
191
192
            hg, seeds, sampler, negative_sampler=dgl.dataloading.negative_sampler.Uniform(2),
            return_indices=True))
193
194
195
196
197
198
        graphs.append(hg)
        nids.append(seeds)
        modes.append('link')

        collators.append(dgl.dataloading.EdgeCollator(
            hg, seeds, sampler, exclude='reverse_types', reverse_etypes=reverse_etypes,
199
200
            negative_sampler=dgl.dataloading.negative_sampler.Uniform(2),
            return_indices=True))
201
202
203
204
205
        graphs.append(hg)
        nids.append(seeds)
        modes.append('link')

    for _g, nid, collator, mode in zip(graphs, nids, collators, modes):
206
207
        dl = DataLoader(
            collator.dataset, collate_fn=collator.collate, batch_size=2, shuffle=True, drop_last=False)
208
        _check_neighbor_sampling_dataloader(_g, nid, dl, mode, collator)
209

210
211
212
213
214
215
216
217
def test_graph_dataloader():
    batch_size = 16
    num_batches = 2
    minigc_dataset = dgl.data.MiniGCDataset(batch_size * num_batches, 10, 20)
    data_loader = dgl.dataloading.GraphDataLoader(minigc_dataset, batch_size=batch_size, shuffle=True)
    for graph, label in data_loader:
        assert isinstance(graph, dgl.DGLGraph)
        assert F.asnumpy(label).shape[0] == batch_size
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def _check_device(data):
    if isinstance(data, dict):
        for k, v in data.items():
            assert v.device == F.ctx()
    elif isinstance(data, list):
        for v in data:
            assert v.device == F.ctx()
    else:
        assert data.device == F.ctx()

def test_node_dataloader():
    sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)

    g1 = dgl.graph(([0, 0, 0, 1, 1], [1, 2, 3, 3, 4]))
    g1.ndata['feat'] = F.copy_to(F.randn((5, 8)), F.cpu())

    # return_indices = False
    dataloader = dgl.dataloading.NodeDataLoader(
        g1, g1.nodes(), sampler, device=F.ctx(), batch_size=g1.num_nodes())
    for input_nodes, output_nodes, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(output_nodes)
        _check_device(blocks)

    # return_indices = True
    dataloader = dgl.dataloading.NodeDataLoader(
        g1, g1.nodes(), sampler, device=F.ctx(), batch_size=g1.num_nodes(), return_indices=True)
    for input_nodes, output_nodes, items, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(output_nodes)
        _check_device(items)
        _check_device(blocks)

    g2 = dgl.heterograph({
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
    })
    for ntype in g2.ntypes:
        g2.nodes[ntype].data['feat'] = F.copy_to(F.randn((g2.num_nodes(ntype), 8)), F.cpu())
    batch_size = max(g2.num_nodes(nty) for nty in g2.ntypes)

    # return_indices = False
    dataloader = dgl.dataloading.NodeDataLoader(
        g2, {nty: g2.nodes(nty) for nty in g2.ntypes},
        sampler, device=F.ctx(), batch_size=batch_size)
    for input_nodes, output_nodes, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(output_nodes)
        _check_device(blocks)

    # return_indices = True
    dataloader = dgl.dataloading.NodeDataLoader(
        g2, {nty: g2.nodes(nty) for nty in g2.ntypes},
        sampler, device=F.ctx(), batch_size=batch_size, return_indices=True)
    for input_nodes, output_nodes, items, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(output_nodes)
        _check_device(items)
        _check_device(blocks)

def test_edge_dataloader():
    sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)
    neg_sampler = dgl.dataloading.negative_sampler.Uniform(2)

    g1 = dgl.graph(([0, 0, 0, 1, 1], [1, 2, 3, 3, 4]))
    g1.ndata['feat'] = F.copy_to(F.randn((5, 8)), F.cpu())

    # return_indices = False & no negative sampler
    dataloader = dgl.dataloading.EdgeDataLoader(
        g1, g1.edges(form='eid'), sampler, device=F.ctx(), batch_size=g1.num_edges())
    for input_nodes, pos_pair_graph, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(blocks)

    # return_indices = False & negative sampler
    dataloader = dgl.dataloading.EdgeDataLoader(
        g1, g1.edges(form='eid'), sampler, device=F.ctx(),
        negative_sampler=neg_sampler, batch_size=g1.num_edges())
    for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(neg_pair_graph)
        _check_device(blocks)

    g2 = dgl.heterograph({
         ('user', 'follow', 'user'): ([0, 0, 0, 1, 1, 1, 2], [1, 2, 3, 0, 2, 3, 0]),
         ('user', 'followed-by', 'user'): ([1, 2, 3, 0, 2, 3, 0], [0, 0, 0, 1, 1, 1, 2]),
         ('user', 'play', 'game'): ([0, 1, 1, 3, 5], [0, 1, 2, 0, 2]),
         ('game', 'played-by', 'user'): ([0, 1, 2, 0, 2], [0, 1, 1, 3, 5])
    })
    for ntype in g2.ntypes:
        g2.nodes[ntype].data['feat'] = F.copy_to(F.randn((g2.num_nodes(ntype), 8)), F.cpu())
    batch_size = max(g2.num_edges(ety) for ety in g2.canonical_etypes)

    # return_indices = True & no negative sampler
    dataloader = dgl.dataloading.EdgeDataLoader(
        g2, {ety: g2.edges(form='eid', etype=ety) for ety in g2.canonical_etypes},
        sampler, device=F.ctx(), batch_size=batch_size, return_indices=True)
    for input_nodes, pos_pair_graph, items, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(items)
        _check_device(blocks)

    # return_indices = True & negative sampler
    dataloader = dgl.dataloading.EdgeDataLoader(
        g2, {ety: g2.edges(form='eid', etype=ety) for ety in g2.canonical_etypes},
        sampler, device=F.ctx(), negative_sampler=neg_sampler,
        batch_size=batch_size, return_indices=True)
    for input_nodes, pos_pair_graph, neg_pair_graph, items, blocks in dataloader:
        _check_device(input_nodes)
        _check_device(pos_pair_graph)
        _check_device(neg_pair_graph)
        _check_device(items)
        _check_device(blocks)

338
339
if __name__ == '__main__':
    test_neighbor_sampler_dataloader()
340
    test_graph_dataloader()
341
342
    test_node_dataloader()
    test_edge_dataloader()