test_readout.py 8.33 KB
Newer Older
1
2
import dgl
import backend as F
3
import networkx as nx
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

def test_simple_readout():
    g1 = dgl.DGLGraph()
    g1.add_nodes(3)
    g2 = dgl.DGLGraph()
    g2.add_nodes(4) # no edges
    g1.add_edges([0, 1, 2], [2, 0, 1])

    n1 = F.randn((3, 5))
    n2 = F.randn((4, 5))
    e1 = F.randn((3, 5))
    s1 = F.sum(n1, 0)   # node sums
    s2 = F.sum(n2, 0)
    se1 = F.sum(e1, 0)  # edge sums
    m1 = F.mean(n1, 0)  # node means
    m2 = F.mean(n2, 0)
    me1 = F.mean(e1, 0) # edge means
    w1 = F.randn((3,))
    w2 = F.randn((4,))
23
24
25
    max1 = F.max(n1, 0)
    max2 = F.max(n2, 0)
    maxe1 = F.max(e1, 0)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    ws1 = F.sum(n1 * F.unsqueeze(w1, 1), 0)
    ws2 = F.sum(n2 * F.unsqueeze(w2, 1), 0)
    wm1 = F.sum(n1 * F.unsqueeze(w1, 1), 0) / F.sum(F.unsqueeze(w1, 1), 0)
    wm2 = F.sum(n2 * F.unsqueeze(w2, 1), 0) / F.sum(F.unsqueeze(w2, 1), 0)
    g1.ndata['x'] = n1
    g2.ndata['x'] = n2
    g1.ndata['w'] = w1
    g2.ndata['w'] = w2
    g1.edata['x'] = e1

    assert F.allclose(dgl.sum_nodes(g1, 'x'), s1)
    assert F.allclose(dgl.sum_nodes(g1, 'x', 'w'), ws1)
    assert F.allclose(dgl.sum_edges(g1, 'x'), se1)
    assert F.allclose(dgl.mean_nodes(g1, 'x'), m1)
    assert F.allclose(dgl.mean_nodes(g1, 'x', 'w'), wm1)
    assert F.allclose(dgl.mean_edges(g1, 'x'), me1)
42
43
    assert F.allclose(dgl.max_nodes(g1, 'x'), max1)
    assert F.allclose(dgl.max_edges(g1, 'x'), maxe1)
44
45
46
47

    g = dgl.batch([g1, g2])
    s = dgl.sum_nodes(g, 'x')
    m = dgl.mean_nodes(g, 'x')
48
    max_bg = dgl.max_nodes(g, 'x')
49
50
    assert F.allclose(s, F.stack([s1, s2], 0))
    assert F.allclose(m, F.stack([m1, m2], 0))
51
    assert F.allclose(max_bg, F.stack([max1, max2], 0))
52
53
54
55
56
57
    ws = dgl.sum_nodes(g, 'x', 'w')
    wm = dgl.mean_nodes(g, 'x', 'w')
    assert F.allclose(ws, F.stack([ws1, ws2], 0))
    assert F.allclose(wm, F.stack([wm1, wm2], 0))
    s = dgl.sum_edges(g, 'x')
    m = dgl.mean_edges(g, 'x')
58
    max_bg_e = dgl.max_edges(g, 'x')
59
60
    assert F.allclose(s, F.stack([se1, F.zeros(5)], 0))
    assert F.allclose(m, F.stack([me1, F.zeros(5)], 0))
61
62
    # TODO(zihao): fix -inf issue
    # assert F.allclose(max_bg_e, F.stack([maxe1, F.zeros(5)], 0)) 
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
def test_topk_nodes():
    # test#1: basic
    g0 = dgl.DGLGraph(nx.path_graph(14))

    feat0 = F.randn((g0.number_of_nodes(), 10))
    g0.ndata['x'] = feat0
    # to test the case where k > number of nodes.
    dgl.topk_nodes(g0, 'x', 20, idx=-1)
    # test correctness
    val, indices = dgl.topk_nodes(g0, 'x', 5, idx=-1)
    ground_truth = F.reshape(
        F.argsort(F.slice_axis(feat0, -1, 9, 10), 0, True)[:5], (5,))
    assert F.allclose(ground_truth, indices)
    g0.ndata.pop('x')

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(12))
    feat1 = F.randn((g1.number_of_nodes(), 10))

    bg = dgl.batch([g0, g1])
    bg.ndata['x'] = F.cat([feat0, feat1], 0)
    # to test the case where k > number of nodes.
    dgl.topk_nodes(bg, 'x', 16, idx=1)
    # test correctness
    val, indices = dgl.topk_nodes(bg, 'x', 6, descending=False, idx=0)
    ground_truth_0 = F.reshape(
        F.argsort(F.slice_axis(feat0, -1, 0, 1), 0, False)[:6], (6,))
    ground_truth_1 = F.reshape(
        F.argsort(F.slice_axis(feat1, -1, 0, 1), 0, False)[:6], (6,))
    ground_truth = F.stack([ground_truth_0, ground_truth_1], 0)
    assert F.allclose(ground_truth, indices)

    # test idx=None
    val, indices = dgl.topk_nodes(bg, 'x', 6, descending=True)
    assert F.allclose(val, F.stack([F.topk(feat0, 6, 0), F.topk(feat1, 6, 0)], 0))

def test_topk_edges():
    # test#1: basic
    g0 = dgl.DGLGraph(nx.path_graph(14))

    feat0 = F.randn((g0.number_of_edges(), 10))
    g0.edata['x'] = feat0
    # to test the case where k > number of edges.
    dgl.topk_edges(g0, 'x', 30, idx=-1)
    # test correctness
    val, indices = dgl.topk_edges(g0, 'x', 7, idx=-1)
    ground_truth = F.reshape(
        F.argsort(F.slice_axis(feat0, -1, 9, 10), 0, True)[:7], (7,))
    assert F.allclose(ground_truth, indices)
    g0.edata.pop('x')

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(12))
    feat1 = F.randn((g1.number_of_edges(), 10))

    bg = dgl.batch([g0, g1])
    bg.edata['x'] = F.cat([feat0, feat1], 0)
    # to test the case where k > number of edges.
    dgl.topk_edges(bg, 'x', 33, idx=1)
    # test correctness
    val, indices = dgl.topk_edges(bg, 'x', 4, descending=False, idx=0)
    ground_truth_0 = F.reshape(
        F.argsort(F.slice_axis(feat0, -1, 0, 1), 0, False)[:4], (4,))
    ground_truth_1 = F.reshape(
        F.argsort(F.slice_axis(feat1, -1, 0, 1), 0, False)[:4], (4,))
    ground_truth = F.stack([ground_truth_0, ground_truth_1], 0)
    assert F.allclose(ground_truth, indices)

    # test idx=None
    val, indices = dgl.topk_edges(bg, 'x', 6, descending=True)
    assert F.allclose(val, F.stack([F.topk(feat0, 6, 0), F.topk(feat1, 6, 0)], 0))

def test_softmax_nodes():
    # test#1: basic
    g0 = dgl.DGLGraph(nx.path_graph(9))

    feat0 = F.randn((g0.number_of_nodes(), 10))
    g0.ndata['x'] = feat0
    ground_truth = F.softmax(feat0, dim=0)
    assert F.allclose(dgl.softmax_nodes(g0, 'x'), ground_truth)
    g0.ndata.pop('x')

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(3))
    g3 = dgl.DGLGraph()
    g4 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g0, g1, g2, g3, g4])
    feat1 = F.randn((g1.number_of_nodes(), 10))
    feat2 = F.randn((g2.number_of_nodes(), 10))
    feat4 = F.randn((g4.number_of_nodes(), 10))
    bg.ndata['x'] = F.cat([feat0, feat1, feat2, feat4], 0)
    ground_truth = F.cat([
        F.softmax(feat0, 0),
        F.softmax(feat1, 0),
        F.softmax(feat2, 0),
        F.softmax(feat4, 0)
    ], 0)
    assert F.allclose(dgl.softmax_nodes(bg, 'x'), ground_truth)

def test_softmax_edges():
    # test#1: basic
    g0 = dgl.DGLGraph(nx.path_graph(10))

    feat0 = F.randn((g0.number_of_edges(), 10))
    g0.edata['x'] = feat0
    ground_truth = F.softmax(feat0, dim=0)
    assert F.allclose(dgl.softmax_edges(g0, 'x'), ground_truth)
    g0.edata.pop('x')

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(3))
    g3 = dgl.DGLGraph()
    g4 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g0, g1, g2, g3, g4])
    feat1 = F.randn((g1.number_of_edges(), 10))
    feat2 = F.randn((g2.number_of_edges(), 10))
    feat4 = F.randn((g4.number_of_edges(), 10))
    bg.edata['x'] = F.cat([feat0, feat1, feat2, feat4], 0)
    ground_truth = F.cat([
        F.softmax(feat0, 0),
        F.softmax(feat1, 0),
        F.softmax(feat2, 0),
        F.softmax(feat4, 0)
    ], 0)
    assert F.allclose(dgl.softmax_edges(bg, 'x'), ground_truth)

def test_broadcast_nodes():
    # test#1: basic
    g0 = dgl.DGLGraph(nx.path_graph(10))
    feat0 = F.randn((40,))
    ground_truth = F.stack([feat0] * g0.number_of_nodes(), 0)
    assert F.allclose(dgl.broadcast_nodes(g0, feat0), ground_truth)

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(3))
    g2 = dgl.DGLGraph()
    g3 = dgl.DGLGraph(nx.path_graph(12))
    bg = dgl.batch([g0, g1, g2, g3])
    feat1 = F.randn((40,))
    feat2 = F.randn((40,))
    feat3 = F.randn((40,))
    ground_truth = F.stack(
        [feat0] * g0.number_of_nodes() +\
        [feat1] * g1.number_of_nodes() +\
        [feat2] * g2.number_of_nodes() +\
        [feat3] * g3.number_of_nodes(), 0
    )
    assert F.allclose(dgl.broadcast_nodes(
        bg, F.stack([feat0, feat1, feat2, feat3], 0)
    ), ground_truth)

def test_broadcast_edges():
    # test#1: basic
    g0 = dgl.DGLGraph(nx.path_graph(10))
    feat0 = F.randn((40,))
    ground_truth = F.stack([feat0] * g0.number_of_edges(), 0)
    assert F.allclose(dgl.broadcast_edges(g0, feat0), ground_truth)

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(3))
    g2 = dgl.DGLGraph()
    g3 = dgl.DGLGraph(nx.path_graph(12))
    bg = dgl.batch([g0, g1, g2, g3])
    feat1 = F.randn((40,))
    feat2 = F.randn((40,))
    feat3 = F.randn((40,))
    ground_truth = F.stack(
        [feat0] * g0.number_of_edges() +\
        [feat1] * g1.number_of_edges() +\
        [feat2] * g2.number_of_edges() +\
        [feat3] * g3.number_of_edges(), 0
    )
    assert F.allclose(dgl.broadcast_edges(
        bg, F.stack([feat0, feat1, feat2, feat3], 0)
    ), ground_truth)
241
242
243

if __name__ == '__main__':
    test_simple_readout()
244
245
246
247
248
249
    test_topk_nodes()
    test_topk_edges()
    test_softmax_nodes()
    test_softmax_edges()
    test_broadcast_nodes()
    test_broadcast_edges()