train_cls.py 5.06 KB
Newer Older
彭卓清's avatar
彭卓清 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from bipointnet_cls import BiPointNetCls
from bipointnet2 import BiPointNet2SSGCls
from ModelNetDataLoader import ModelNetDataLoader
import provider
import argparse
import os
import urllib
import tqdm
from functools import partial
from dgl.data.utils import download, get_download_dir
import dgl
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
import torch
torch.backends.cudnn.enabled = False


# from dataset import ModelNet

parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='bipointnet')
parser.add_argument('--dataset-path', type=str, default='')
parser.add_argument('--load-model-path', type=str, default='')
parser.add_argument('--save-model-path', type=str, default='')
parser.add_argument('--num-epochs', type=int, default=200)
parser.add_argument('--num-workers', type=int, default=0)
parser.add_argument('--batch-size', type=int, default=32)
args = parser.parse_args()

num_workers = args.num_workers
batch_size = args.batch_size

data_filename = 'modelnet40_normal_resampled.zip'
download_path = os.path.join(get_download_dir(), data_filename)
local_path = args.dataset_path or os.path.join(
    get_download_dir(), 'modelnet40_normal_resampled')
if not os.path.exists(local_path):
    download('https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip',
             download_path, verify_ssl=False)
    from zipfile import ZipFile
    with ZipFile(download_path) as z:
        z.extractall(path=get_download_dir())

CustomDataLoader = partial(
    DataLoader,
    num_workers=num_workers,
    batch_size=batch_size,
    shuffle=True,
    drop_last=True)


def train(net, opt, scheduler, train_loader, dev):

    net.train()

    total_loss = 0
    num_batches = 0
    total_correct = 0
    count = 0
    loss_f = nn.CrossEntropyLoss()
    with tqdm.tqdm(train_loader, ascii=True) as tq:
        for data, label in tq:
            data = data.data.numpy()
            data = provider.random_point_dropout(data)
            data[:, :, 0:3] = provider.random_scale_point_cloud(
                data[:, :, 0:3])
            data[:, :, 0:3] = provider.jitter_point_cloud(data[:, :, 0:3])
            data[:, :, 0:3] = provider.shift_point_cloud(data[:, :, 0:3])
            data = torch.tensor(data)
            label = label[:, 0]

            num_examples = label.shape[0]
            data, label = data.to(dev), label.to(dev).squeeze().long()
            opt.zero_grad()
            logits = net(data)
            loss = loss_f(logits, label)
            loss.backward()
            opt.step()

            _, preds = logits.max(1)

            num_batches += 1
            count += num_examples
            loss = loss.item()
            correct = (preds == label).sum().item()
            total_loss += loss
            total_correct += correct

            tq.set_postfix({
                'AvgLoss': '%.5f' % (total_loss / num_batches),
                'AvgAcc': '%.5f' % (total_correct / count)})
    scheduler.step()


def evaluate(net, test_loader, dev):
    net.eval()

    total_correct = 0
    count = 0

    with torch.no_grad():
        with tqdm.tqdm(test_loader, ascii=True) as tq:
            for data, label in tq:
                label = label[:, 0]
                num_examples = label.shape[0]
                data, label = data.to(dev), label.to(dev).squeeze().long()
                logits = net(data)
                _, preds = logits.max(1)

                correct = (preds == label).sum().item()
                total_correct += correct
                count += num_examples

                tq.set_postfix({
                    'AvgAcc': '%.5f' % (total_correct / count)})

    return total_correct / count


dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")

if args.model == 'bipointnet':
    net = BiPointNetCls(40, input_dims=6)
elif args.model == 'bipointnet2_ssg':
    net = BiPointNet2SSGCls(40, batch_size, input_dims=6)

net = net.to(dev)
if args.load_model_path:
    net.load_state_dict(torch.load(args.load_model_path, map_location=dev))

opt = optim.Adam(net.parameters(), lr=1e-3, weight_decay=1e-4)

scheduler = optim.lr_scheduler.StepLR(opt, step_size=20, gamma=0.7)

train_dataset = ModelNetDataLoader(local_path, 1024, split='train')
test_dataset = ModelNetDataLoader(local_path, 1024, split='test')
train_loader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True)
test_loader = torch.utils.data.DataLoader(
    test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, drop_last=True)

best_test_acc = 0

for epoch in range(args.num_epochs):
    train(net, opt, scheduler, train_loader, dev)
    if (epoch + 1) % 1 == 0:
        print('Epoch #%d Testing' % epoch)
        test_acc = evaluate(net, test_loader, dev)
        if test_acc > best_test_acc:
            best_test_acc = test_acc
            if args.save_model_path:
                torch.save(net.state_dict(), args.save_model_path)
        print('Current test acc: %.5f (best: %.5f)' % (
            test_acc, best_test_acc))