"tests/python/mxnet/test_nn.py" did not exist on "650f6ee1e0b3c2888a2c6d7db9c3d159cae5a583"
basic.py 6.98 KB
Newer Older
彭卓清's avatar
彭卓清 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn.modules.utils import _single
from torch.autograd import Function
from torch.nn import Parameter
import dgl


class BinaryQuantize(Function):
    @staticmethod
    def forward(ctx, input):
        ctx.save_for_backward(input)
        out = torch.sign(input)
        return out

    @staticmethod
    def backward(ctx, grad_output):
        input = ctx.saved_tensors
        grad_input = grad_output
        grad_input[input[0].gt(1)] = 0
        grad_input[input[0].lt(-1)] = 0
        return grad_input


class BiLinearLSR(torch.nn.Linear):
    def __init__(self, in_features, out_features, bias=False, binary_act=True):
        super(BiLinearLSR, self).__init__(in_features, out_features, bias=bias)
        self.binary_act = binary_act

        # must register a nn.Parameter placeholder for model loading
        # self.register_parameter('scale', None) doesn't register None into state_dict
        # so it leads to unexpected key error when loading saved model
        # hence, init scale with Parameter
        # however, Parameter(None) actually has size [0], not [] as a scalar
        # hence, init it using the following trick
        self.register_parameter('scale', Parameter(torch.Tensor([0.0]).squeeze()))

    def reset_scale(self, input):
        bw = self.weight
        ba = input
        bw = bw - bw.mean()
        self.scale = Parameter((F.linear(ba, bw).std() / F.linear(torch.sign(ba), torch.sign(bw)).std()).float().to(ba.device))
        # corner case when ba is all 0.0
        if torch.isnan(self.scale):
            self.scale = Parameter((bw.std() / torch.sign(bw).std()).float().to(ba.device))

    def forward(self, input):
        bw = self.weight
        ba = input
        bw = bw - bw.mean()

        if self.scale.item() == 0.0:
            self.reset_scale(input)

        bw = BinaryQuantize().apply(bw)
        bw = bw * self.scale
        if self.binary_act:
            ba = BinaryQuantize().apply(ba)
        output = F.linear(ba, bw)
        return output


class BiLinear(torch.nn.Linear):
    def __init__(self, in_features, out_features, bias=True, binary_act=True):
        super(BiLinear, self).__init__(in_features, out_features, bias=True)
        self.binary_act = binary_act
        self.output_ = None

    def forward(self, input):
        bw = self.weight
        ba = input
        bw = BinaryQuantize().apply(bw)
        if self.binary_act:
            ba = BinaryQuantize().apply(ba)
        output = F.linear(ba, bw, self.bias)
        self.output_ = output
        return output


class BiConv2d(torch.nn.Conv2d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=True, padding_mode='zeros'):
        super(BiConv2d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            groups, bias, padding_mode)

    def forward(self, input):

        bw = self.weight
        ba = input
        bw = bw - bw.mean()
        bw = BinaryQuantize().apply(bw)
        ba = BinaryQuantize().apply(ba)

        if self.padding_mode == 'circular':
            expanded_padding = ((self.padding[0] + 1) // 2, self.padding[0] // 2)
            return F.conv2d(F.pad(ba, expanded_padding, mode='circular'),
                            bw, self.bias, self.stride,
                            _single(0), self.dilation, self.groups)    
        return F.conv2d(ba, bw, self.bias, self.stride,
                        self.padding, self.dilation, self.groups)


def square_distance(src, dst):
    '''
    Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
    '''
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist

def index_points(points, idx):
    '''
    Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
    '''
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    view_shape[1:] = [1] * (len(view_shape) - 1)
    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points


class FixedRadiusNearNeighbors(nn.Module):
    '''
    Ball Query - Find the neighbors with-in a fixed radius
    '''
    def __init__(self, radius, n_neighbor):
        super(FixedRadiusNearNeighbors, self).__init__()
        self.radius = radius
        self.n_neighbor = n_neighbor

    def forward(self, pos, centroids):
        '''
        Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
        '''
        device = pos.device
        B, N, _ = pos.shape
        center_pos = index_points(pos, centroids)
        _, S, _ = center_pos.shape
        group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
        sqrdists = square_distance(center_pos, pos)
        group_idx[sqrdists > self.radius ** 2] = N
        group_idx = group_idx.sort(dim=-1)[0][:, :, :self.n_neighbor]
        group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, self.n_neighbor])
        mask = group_idx == N
        group_idx[mask] = group_first[mask]
        return group_idx


class FixedRadiusNNGraph(nn.Module):
    '''
    Build NN graph
    '''
    def __init__(self, radius, n_neighbor):
        super(FixedRadiusNNGraph, self).__init__()
        self.radius = radius
        self.n_neighbor = n_neighbor
        self.frnn = FixedRadiusNearNeighbors(radius, n_neighbor)

    def forward(self, pos, centroids, feat=None):
        dev = pos.device
        group_idx = self.frnn(pos, centroids)
        B, N, _ = pos.shape
        glist = []
        for i in range(B):
            center = torch.zeros((N)).to(dev)
            center[centroids[i]] = 1
            src = group_idx[i].contiguous().view(-1)
            dst = centroids[i].view(-1, 1).repeat(1, self.n_neighbor).view(-1)

            unified = torch.cat([src, dst])
            uniq, inv_idx = torch.unique(unified, return_inverse=True)
            src_idx = inv_idx[:src.shape[0]]
            dst_idx = inv_idx[src.shape[0]:]

            g = dgl.graph((src_idx, dst_idx))
            g.ndata['pos'] = pos[i][uniq]
            g.ndata['center'] = center[uniq]
            if feat is not None:
                g.ndata['feat'] = feat[i][uniq]
            glist.append(g)
        bg = dgl.batch(glist)
        return bg


class RelativePositionMessage(nn.Module):
    '''
    Compute the input feature from neighbors
    '''
    def __init__(self, n_neighbor):
        super(RelativePositionMessage, self).__init__()
        self.n_neighbor = n_neighbor

    def forward(self, edges):
        pos = edges.src['pos'] - edges.dst['pos']
        if 'feat' in edges.src:
            res = torch.cat([pos, edges.src['feat']], 1)
        else:
            res = pos
        return {'agg_feat': res}