geniepath.py 8.98 KB
Newer Older
Ivan Brugere's avatar
Ivan Brugere committed
1
2
3
4
5
6
7
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jul  9 13:34:38 2018

@author: ivabruge

Ivan Brugere's avatar
Ivan Brugere committed
8
9
10
11
12
13
14
GeniePath: Graph Neural Networks with Adaptive Receptive Paths
Paper: https://arxiv.org/abs/1802.00910

this model uses an LSTM on the node reductions of the message-passing step 

we store the network states at the graph node, since the LSTM variables are not transmitted

Ivan Brugere's avatar
Ivan Brugere committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
"""

from dgl.graph import DGLGraph
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
from dataset import load_data, preprocess_features

class NodeReduceModule(nn.Module):
    def __init__(self, input_dim, num_hidden, num_heads=3, input_dropout=None,
            attention_dropout=None, act=lambda x: F.softmax(F.leaky_relu(x), dim=0)):
        super(NodeReduceModule, self).__init__()
        self.num_heads = num_heads
        self.input_dropout = input_dropout
        self.attention_dropout = attention_dropout
        self.act = act
        self.fc = nn.ModuleList(
                [nn.Linear(input_dim, num_hidden, bias=False)
                    for _ in range(num_heads)])
Ivan Brugere's avatar
Ivan Brugere committed
35
        
Ivan Brugere's avatar
Ivan Brugere committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        self.attention = nn.ModuleList(
                [nn.Linear(num_hidden * 2, 1, bias=False) for _ in range(num_heads)])

    def forward(self, msgs):
        src, dst = zip(*msgs)
        hu = torch.cat(src, dim=0) # neighbor repr
        hv = torch.cat(dst, dim=0)

        msgs_repr = []

        # iterate for each head
        for i in range(self.num_heads):
            # calc W*hself and W*hneigh
            hvv = self.fc[i](hv)
            huu = self.fc[i](hu)
            # calculate W*hself||W*hneigh
            h = torch.cat((hvv, huu), dim=1)
            a = self.act(self.attention[i](h))
            if self.attention_dropout is not None:
                a = F.dropout(a, self.attention_dropout)
            if self.input_dropout is not None:
                hvv = F.dropout(hvv, self.input_dropout)
            h = torch.sum(a * hvv, 0, keepdim=True)
            msgs_repr.append(h)

        return msgs_repr


class NodeUpdateModule(nn.Module):
Ivan Brugere's avatar
Ivan Brugere committed
65
    def __init__(self, residual, fc, act, aggregator, lstm_size=0):
Ivan Brugere's avatar
Ivan Brugere committed
66
67
68
69
70
71
        super(NodeUpdateModule, self).__init__()
        
        self.residual = residual
        self.fc = fc
        self.act = act
        self.aggregator = aggregator
Ivan Brugere's avatar
Ivan Brugere committed
72
73
74
75
76
77
78
        
        if lstm_size:
            self.lstm = nn.LSTM(input_size=lstm_size, hidden_size=lstm_size, num_layers=1)
        else:
            self.lstm=None
        
        #print(fc[0].out_features)
Ivan Brugere's avatar
Ivan Brugere committed
79
80
81
82
83
84
85
86
87
88
89
    def forward(self, node, msgs_repr):
        # apply residual connection and activation for each head
        for i in range(len(msgs_repr)):
            if self.residual:
                h = self.fc[i](node['h'])
                msgs_repr[i] = msgs_repr[i] + h
            if self.act is not None:
                msgs_repr[i] = self.act(msgs_repr[i])

        # aggregate multi-head results
        h = self.aggregator(msgs_repr)
Ivan Brugere's avatar
Ivan Brugere committed
90
91
        #print(h.shape)
        if self.lstm is not None:
Ivan Brugere's avatar
Ivan Brugere committed
92
            c0 = torch.zeros(h.shape)
Ivan Brugere's avatar
Ivan Brugere committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
            if node['c'] is None:
                c0 = torch.zeros(h.shape)
            else:
                c0 = node['c']
            if node['h_i'] is None:
                h0 = torch.zeros(h.shape)
            else:
                h0 = node['h_i']
            #add dimension to handle sequential (create sequence of length 1)
            h, (h_i, c) = self.lstm(h.unsqueeze(0), (h0.unsqueeze(0), c0.unsqueeze(0)))
            #remove sequential dim
            h = torch.squeeze(h, 0)
            h_i = torch.squeeze(h, 0)
            c = torch.squeeze(c, 0)
            return {'h': h, 'c':c, 'h_i':h_i}
Ivan Brugere's avatar
Ivan Brugere committed
108
        else:
Ivan Brugere's avatar
Ivan Brugere committed
109
110
            return {'h': h, 'c':None, 'h_i':None}
            
Ivan Brugere's avatar
Ivan Brugere committed
111
112
        

Ivan Brugere's avatar
Ivan Brugere committed
113
class GeniePath(nn.Module):
Ivan Brugere's avatar
Ivan Brugere committed
114
115
    def __init__(self, num_layers, in_dim, num_hidden, num_classes, num_heads,
            activation, input_dropout, attention_dropout, use_residual=False ):
Ivan Brugere's avatar
Ivan Brugere committed
116
        super(GeniePath, self).__init__()
Ivan Brugere's avatar
Ivan Brugere committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

        self.input_dropout = input_dropout
        self.reduce_layers = nn.ModuleList()
        self.update_layers = nn.ModuleList()
        # hidden layers
        for i in range(num_layers):
            if i == 0:
                last_dim = in_dim
                residual = False
            else:
                last_dim = num_hidden * num_heads # because of concat heads
                residual = use_residual
            self.reduce_layers.append(
                    NodeReduceModule(last_dim, num_hidden, num_heads, input_dropout,
                        attention_dropout))
            self.update_layers.append(
                    NodeUpdateModule(residual, self.reduce_layers[-1].fc, activation,
Ivan Brugere's avatar
Ivan Brugere committed
134
                        lambda x: torch.cat(x, 1), num_hidden * num_heads))
Ivan Brugere's avatar
Ivan Brugere committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        # projection
        self.reduce_layers.append(
            NodeReduceModule(num_hidden * num_heads, num_classes, 1, input_dropout,
                attention_dropout))
        self.update_layers.append(
            NodeUpdateModule(False, self.reduce_layers[-1].fc, None, sum))

    def forward(self, g):
        g.register_message_func(lambda src, dst, edge: (src['h'], dst['h']))
        for reduce_func, update_func in zip(self.reduce_layers, self.update_layers):
            # apply dropout
            if self.input_dropout is not None:
                # TODO (lingfan): use batched dropout once we have better api
                #                 for global manipulation
                for n in g.nodes():
                    g.node[n]['h'] = F.dropout(g.node[n]['h'], p=self.input_dropout)
                    g.node[n]['c'] = None
                    g.node[n]['h_i'] = None
            g.register_reduce_func(reduce_func)
            g.register_update_func(update_func)
            g.update_all()
        logits = [g.node[n]['h'] for n in g.nodes()]
        logits = torch.cat(logits, dim=0)
        return logits
Ivan Brugere's avatar
Ivan Brugere committed
159
160
    
    #train on graph g with features, and target labels. Accepts a loss function and an optimizer function which implements optimizer.step()
Ivan Brugere's avatar
Ivan Brugere committed
161
162
163
164
165
166
167
168
    def train(self, g, features, labels, epochs, loss_f=torch.nn.NLLLoss, loss_params={}, optimizer=torch.optim.Adam, optimizer_parameters=None, lr=0.001, ignore=[0], quiet=False):
        
        labels = torch.LongTensor(labels)
        _, labels = torch.max(labels, dim=1)
        # convert labels and masks to tensor
        
        if optimizer_parameters is None:
            optimizer_parameters = self.parameters()
Ivan Brugere's avatar
Ivan Brugere committed
169
170
            
        #instantiate optimizer on given params
Ivan Brugere's avatar
Ivan Brugere committed
171
172
173
174
175
176
177
178
179
180
181
182
        optimizer_f = optimizer(optimizer_parameters, lr)        
        
        for epoch in range(args.epochs):
            # reset grad
            optimizer_f.zero_grad()
    
            # reset graph states
            for n in g.nodes():
                g.node[n]['h'] = torch.FloatTensor(features[n].toarray())
    
            # forward
            logits = self.forward(g)
Ivan Brugere's avatar
Ivan Brugere committed
183
184
   
            #intantiate loss on passed parameters (e.g. class weight params)         
Ivan Brugere's avatar
Ivan Brugere committed
185
            loss = loss_f(**loss_params)
Ivan Brugere's avatar
Ivan Brugere committed
186
187
            
            #trim null labels
Ivan Brugere's avatar
Ivan Brugere committed
188
189
190
191
192
193
194
195
196
197
198
199
200
            idx = [i for i, a in enumerate(labels) if a not in ignore]
            logits = logits[idx, :]
            labels = labels[idx]
            out = loss(logits, labels)
            
            if not quiet:
                print("epoch {} loss: {}".format(epoch, out))
                
            out.backward()
            optimizer_f.step()

def main(args):
    # dropout parameters
Ivan Brugere's avatar
Ivan Brugere committed
201
202
    input_dropout = args.idrop
    attention_dropout = args.adrop
Ivan Brugere's avatar
Ivan Brugere committed
203
204
205
206
207
208
209
210
211

    # load and preprocess dataset
    adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = load_data(args.dataset)
    features = preprocess_features(features)

    # initialize graph
    g = DGLGraph(adj)

    # create model
Ivan Brugere's avatar
Ivan Brugere committed
212
    model = GeniePath(args.num_layers,
Ivan Brugere's avatar
Ivan Brugere committed
213
214
215
216
217
218
219
220
                features.shape[1],
                args.num_hidden,
                y_train.shape[1],
                args.num_heads,
                F.elu,
                input_dropout,
                attention_dropout,
                args.residual)
Ivan Brugere's avatar
Ivan Brugere committed
221
    model.train(g, features, y_train, epochs=args.epochs)
Ivan Brugere's avatar
Ivan Brugere committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GAT')
    parser.add_argument("--dataset", type=str, required=True,
            help="dataset name")
    parser.add_argument("--epochs", type=int, default=10,
            help="training epoch")
    parser.add_argument("--num-heads", type=int, default=3,
            help="number of attentional heads to use")
    parser.add_argument("--num-layers", type=int, default=1,
            help="number of hidden layers")
    parser.add_argument("--num-hidden", type=int, default=8,
            help="size of hidden units")
    parser.add_argument("--residual", action="store_true",
            help="use residual connection")
    parser.add_argument("--lr", type=float, default=0.001,
            help="learning rate")
Ivan Brugere's avatar
Ivan Brugere committed
239
240
241
242
243
    parser.add_argument("--idrop", type=float, default=0.2,
            help="Input dropout")
    parser.add_argument("--adrop", type=float, default=0.2,
            help="attention dropout")
    
Ivan Brugere's avatar
Ivan Brugere committed
244
245
246
247
    args = parser.parse_args()
    print(args)

    main(args)