union_partition.cc 7.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cpu/coo_union_partition.cc
 * \brief COO union and partition
 */
#include <dgl/array.h>
#include <vector>

namespace dgl {
namespace aten {
///////////////////////// COO Based Operations/////////////////////////
COOMatrix DisjointUnionCoo(const std::vector<COOMatrix>& coos) {
  CHECK(coos.size() > 1) <<
    "The length of input COOMatrix vector should be larger than 1";
  uint64_t src_offset = 0, dst_offset = 0;
  int64_t edge_data_offset = 0;
  bool has_data = false;
  bool row_sorted = true;
  bool col_sorted = true;

  // check if data index array
  for (size_t i = 0; i < coos.size(); ++i) {
    CHECK_SAME_DTYPE(coos[0].row, coos[i].row);
    CHECK_SAME_CONTEXT(coos[0].row, coos[i].row);
    has_data |= COOHasData(coos[i]);
  }

  std::vector<IdArray> res_src;
  std::vector<IdArray> res_dst;
  std::vector<IdArray> res_data;
  res_src.resize(coos.size());
  res_dst.resize(coos.size());

  for (size_t i = 0; i < coos.size(); ++i) {
    const aten::COOMatrix &coo = coos[i];
    row_sorted &= coo.row_sorted;
    col_sorted &= coo.col_sorted;
    IdArray edges_src = coo.row + src_offset;
    IdArray edges_dst = coo.col + dst_offset;
    res_src[i] = edges_src;
    res_dst[i] = edges_dst;
    src_offset += coo.num_rows;
    dst_offset += coo.num_cols;

    // any one of input coo has data index array
    if (has_data) {
      IdArray edges_data;
      if (COOHasData(coo) == false) {
        edges_data = Range(edge_data_offset,
                           edge_data_offset + coo.row->shape[0],
                           coo.row->dtype.bits,
                           coo.row->ctx);
      } else {
        edges_data = coo.data + edge_data_offset;
      }
      res_data.push_back(edges_data);
      edge_data_offset += coo.row->shape[0];
    }
  }

  IdArray result_src = Concat(res_src);
  IdArray result_dst = Concat(res_dst);
  IdArray result_data = has_data ? Concat(res_data) : NullArray();

  return COOMatrix(
    src_offset, dst_offset,
    result_src,
    result_dst,
    result_data,
    row_sorted,
    col_sorted);
}

std::vector<COOMatrix> DisjointPartitionCooBySizes(
  const COOMatrix &coo,
  const uint64_t batch_size,
  const std::vector<uint64_t> &edge_cumsum,
  const std::vector<uint64_t> &src_vertex_cumsum,
  const std::vector<uint64_t> &dst_vertex_cumsum) {
  CHECK_EQ(edge_cumsum.size(), batch_size + 1);
  CHECK_EQ(src_vertex_cumsum.size(), batch_size + 1);
  CHECK_EQ(dst_vertex_cumsum.size(), batch_size + 1);
  std::vector<COOMatrix> ret;
  ret.resize(batch_size);

  for (size_t g = 0; g < batch_size; ++g) {
    IdArray result_src = IndexSelect(coo.row,
                                     edge_cumsum[g],
                                     edge_cumsum[g + 1]) - src_vertex_cumsum[g];
    IdArray result_dst = IndexSelect(coo.col,
                                     edge_cumsum[g],
                                     edge_cumsum[g + 1]) - dst_vertex_cumsum[g];
    IdArray result_data = NullArray();
    // has data index array
    if (COOHasData(coo)) {
      result_data = IndexSelect(coo.data,
                                edge_cumsum[g],
                                edge_cumsum[g + 1]) - edge_cumsum[g];
    }

    COOMatrix sub_coo = COOMatrix(
        src_vertex_cumsum[g+1]-src_vertex_cumsum[g],
        dst_vertex_cumsum[g+1]-dst_vertex_cumsum[g],
        result_src,
        result_dst,
        result_data,
        coo.row_sorted,
        coo.col_sorted);
    ret[g] = sub_coo;
  }

  return ret;
}

///////////////////////// CSR Based Operations/////////////////////////
CSRMatrix DisjointUnionCsr(const std::vector<CSRMatrix>& csrs) {
  CHECK(csrs.size() > 1) <<
    "The length of input CSRMatrix vector should be larger than 1";
  uint64_t src_offset = 0, dst_offset = 0;
  int64_t indices_offset = 0;
  bool has_data = false;
  bool sorted = true;

  // check if data index array
  for (size_t i = 0; i < csrs.size(); ++i) {
    CHECK_SAME_DTYPE(csrs[0].indptr, csrs[i].indptr);
    CHECK_SAME_CONTEXT(csrs[0].indices, csrs[i].indices);
    has_data |= CSRHasData(csrs[i]);
  }

  std::vector<IdArray> res_indptr;
  std::vector<IdArray> res_indices;
  std::vector<IdArray> res_data;
  res_indptr.resize(csrs.size());
  res_indices.resize(csrs.size());

  for (size_t i = 0; i < csrs.size(); ++i) {
    const aten::CSRMatrix &csr = csrs[i];
    sorted &= csr.sorted;
    IdArray indptr = csr.indptr + indices_offset;
    IdArray indices = csr.indices + dst_offset;
    if (i > 0)
      indptr = IndexSelect(indptr,
                           1,
                           indptr->shape[0]);
    res_indptr[i] = indptr;
    res_indices[i] = indices;
    src_offset += csr.num_rows;
    dst_offset += csr.num_cols;

    // any one of input csr has data index array
    if (has_data) {
      IdArray edges_data;
      if (CSRHasData(csr) == false) {
        edges_data = Range(indices_offset,
                           indices_offset + csr.indices->shape[0],
                           csr.indices->dtype.bits,
                           csr.indices->ctx);
      } else {
        edges_data = csr.data + indices_offset;
      }
      res_data.push_back(edges_data);
      indices_offset += csr.indices->shape[0];
    }
  }

  IdArray result_indptr = Concat(res_indptr);
  IdArray result_indices = Concat(res_indices);
  IdArray result_data = has_data ? Concat(res_data) : NullArray();

  return CSRMatrix(
    src_offset, dst_offset,
    result_indptr,
    result_indices,
    result_data,
    sorted);
}

std::vector<CSRMatrix> DisjointPartitionCsrBySizes(
  const CSRMatrix &csr,
  const uint64_t batch_size,
  const std::vector<uint64_t> &edge_cumsum,
  const std::vector<uint64_t> &src_vertex_cumsum,
  const std::vector<uint64_t> &dst_vertex_cumsum) {
  CHECK_EQ(edge_cumsum.size(), batch_size + 1);
  CHECK_EQ(src_vertex_cumsum.size(), batch_size + 1);
  CHECK_EQ(dst_vertex_cumsum.size(), batch_size + 1);
  std::vector<CSRMatrix> ret;
  ret.resize(batch_size);

  for (size_t g = 0; g < batch_size; ++g) {
    uint64_t num_src = src_vertex_cumsum[g+1]-src_vertex_cumsum[g];
    IdArray result_indptr;
    if (g == 0) {
      result_indptr = IndexSelect(csr.indptr,
                                  0,
                                  src_vertex_cumsum[1] + 1) - edge_cumsum[0];
    } else {
      result_indptr = IndexSelect(csr.indptr,
                                  src_vertex_cumsum[g],
                                  src_vertex_cumsum[g+1] + 1) - edge_cumsum[g];
    }

    IdArray result_indices = IndexSelect(csr.indices,
                                         edge_cumsum[g],
                                         edge_cumsum[g+1]) - dst_vertex_cumsum[g];

    IdArray result_data = NullArray();
    // has data index array
    if (CSRHasData(csr)) {
      result_data = IndexSelect(csr.data,
                                edge_cumsum[g],
                                edge_cumsum[g+1]) - edge_cumsum[g];
    }

    CSRMatrix sub_csr = CSRMatrix(
      num_src,
      dst_vertex_cumsum[g+1]-dst_vertex_cumsum[g],
      result_indptr,
      result_indices,
      result_data,
      csr.sorted);
    ret[g] = sub_csr;
  }

  return ret;
}

}  // namespace aten
}  // namespace dgl