ModelNetDataLoader.py 3.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import numpy as np
import warnings
import os
from torch.utils.data import Dataset
warnings.filterwarnings('ignore')

def pc_normalize(pc):
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
    pc = pc / m
    return pc

def farthest_point_sample(point, npoint):
    """
    Farthest point sampler works as follows:
    1. Initialize the sample set S with a random point
    2. Pick point P not in S, which maximizes the distance d(P, S)
    3. Repeat step 2 until |S| = npoint

    Input:
        xyz: pointcloud data, [N, D]
        npoint: number of samples
    Return:
        centroids: sampled pointcloud index, [npoint, D]
    """
    N, D = point.shape
    xyz = point[:,:3]
    centroids = np.zeros((npoint,))
    distance = np.ones((N,)) * 1e10
    farthest = np.random.randint(0, N)
    for i in range(npoint):
        centroids[i] = farthest
        centroid = xyz[farthest, :]
        dist = np.sum((xyz - centroid) ** 2, -1)
        mask = dist < distance
        distance[mask] = dist[mask]
        farthest = np.argmax(distance, -1)
    point = point[centroids.astype(np.int32)]
    return point

class ModelNetDataLoader(Dataset):
    def __init__(self, root, npoint=1024, split='train', fps=False, 
                 normal_channel=True, cache_size=15000):
        """
        Input:
            root: the root path to the local data files 
            npoint: number of points from each cloud
            split: which split of the data, 'train' or 'test'
            fps: whether to sample points with farthest point sampler
            normal_channel: whether to use additional channel
            cache_size: the cache size of in-memory point clouds
        """
        self.root = root
        self.npoints = npoint
        self.fps = fps
        self.catfile = os.path.join(self.root, 'modelnet40_shape_names.txt')

        self.cat = [line.rstrip() for line in open(self.catfile)]
        self.classes = dict(zip(self.cat, range(len(self.cat))))
        self.normal_channel = normal_channel

        shape_ids = {}
        shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_train.txt'))]
        shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_test.txt'))]

        assert (split == 'train' or split == 'test')
        shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids[split]]
        # list of (shape_name, shape_txt_file_path) tuple
        self.datapath = [(shape_names[i], os.path.join(self.root, shape_names[i], shape_ids[split][i]) + '.txt') for i
                         in range(len(shape_ids[split]))]
        print('The size of %s data is %d'%(split,len(self.datapath)))

        self.cache_size = cache_size
        self.cache = {}

    def __len__(self):
        return len(self.datapath)

    def _get_item(self, index):
        if index in self.cache:
            point_set, cls = self.cache[index]
        else:
            fn = self.datapath[index]
            cls = self.classes[self.datapath[index][0]]
            cls = np.array([cls]).astype(np.int32)
            point_set = np.loadtxt(fn[1], delimiter=',').astype(np.float32)
            if self.fps:
                point_set = farthest_point_sample(point_set, self.npoints)
            else:
                point_set = point_set[0:self.npoints,:]

            point_set[:, 0:3] = pc_normalize(point_set[:, 0:3])

            if not self.normal_channel:
                point_set = point_set[:, 0:3]

            if len(self.cache) < self.cache_size:
                self.cache[index] = (point_set, cls)

        return point_set, cls

    def __getitem__(self, index):
        return self._get_item(index)