test_batched_heterograph.py 12.8 KB
Newer Older
1
2
import dgl
import backend as F
Mufei Li's avatar
Mufei Li committed
3
import unittest
4
5

from dgl.base import ALL
6
from utils import parametrize_dtype
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

def check_equivalence_between_heterographs(g1, g2, node_attrs=None, edge_attrs=None):
    assert g1.ntypes == g2.ntypes
    assert g1.etypes == g2.etypes
    assert g1.canonical_etypes == g2.canonical_etypes

    for nty in g1.ntypes:
        assert g1.number_of_nodes(nty) == g2.number_of_nodes(nty)

    for ety in g1.etypes:
        if len(g1._etype2canonical[ety]) > 0:
            assert g1.number_of_edges(ety) == g2.number_of_edges(ety)

    for ety in g1.canonical_etypes:
        assert g1.number_of_edges(ety) == g2.number_of_edges(ety)
        src1, dst1 = g1.all_edges(etype=ety)
        src2, dst2 = g2.all_edges(etype=ety)
        assert F.allclose(src1, src2)
        assert F.allclose(dst1, dst2)

    if node_attrs is not None:
        for nty in node_attrs.keys():
29
30
            if g1.number_of_nodes(nty) == 0:
                continue
31
32
33
34
35
            for feat_name in node_attrs[nty]:
                assert F.allclose(g1.nodes[nty].data[feat_name], g2.nodes[nty].data[feat_name])

    if edge_attrs is not None:
        for ety in edge_attrs.keys():
36
37
            if g1.number_of_edges(ety) == 0:
                continue
38
39
40
            for feat_name in edge_attrs[ety]:
                assert F.allclose(g1.edges[ety].data[feat_name], g2.edges[ety].data[feat_name])

41
42
@parametrize_dtype
def test_batching_hetero_topology(index_dtype):
43
44
45
46
47
    """Test batching two DGLHeteroGraphs where some nodes are isolated in some relations"""
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'follows', 'developer'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): [(0, 0), (1, 0), (2, 1), (3, 1)]
48
    }, index_dtype=index_dtype)
49
50
51
52
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'follows', 'developer'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): [(0, 0), (1, 0), (2, 1)]
53
    }, index_dtype=index_dtype)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    bg = dgl.batch_hetero([g1, g2])

    assert bg.ntypes == g2.ntypes
    assert bg.etypes == g2.etypes
    assert bg.canonical_etypes == g2.canonical_etypes
    assert bg.batch_size == 2

    # Test number of nodes
    for ntype in bg.ntypes:
        assert bg.batch_num_nodes(ntype) == [
            g1.number_of_nodes(ntype), g2.number_of_nodes(ntype)]
        assert bg.number_of_nodes(ntype) == (
                g1.number_of_nodes(ntype) + g2.number_of_nodes(ntype))

    # Test number of edges
    assert bg.batch_num_edges('plays') == [
        g1.number_of_edges('plays'), g2.number_of_edges('plays')]
    assert bg.number_of_edges('plays') == (
        g1.number_of_edges('plays') + g2.number_of_edges('plays'))

    for etype in bg.canonical_etypes:
        assert bg.batch_num_edges(etype) == [
            g1.number_of_edges(etype), g2.number_of_edges(etype)]
        assert bg.number_of_edges(etype) == (
            g1.number_of_edges(etype) + g2.number_of_edges(etype))

    # Test relabeled nodes
    for ntype in bg.ntypes:
        assert list(F.asnumpy(bg.nodes(ntype))) == list(range(bg.number_of_nodes(ntype)))

    # Test relabeled edges
    src, dst = bg.all_edges(etype=('user', 'follows', 'user'))
    assert list(F.asnumpy(src)) == [0, 1, 4, 5]
    assert list(F.asnumpy(dst)) == [1, 2, 5, 6]
    src, dst = bg.all_edges(etype=('user', 'follows', 'developer'))
    assert list(F.asnumpy(src)) == [0, 1, 4, 5]
    assert list(F.asnumpy(dst)) == [1, 2, 4, 5]
    src, dst = bg.all_edges(etype='plays')
    assert list(F.asnumpy(src)) == [0, 1, 2, 3, 4, 5, 6]
    assert list(F.asnumpy(dst)) == [0, 0, 1, 1, 2, 2, 3]

    # Test unbatching graphs
    g3, g4 = dgl.unbatch_hetero(bg)
    check_equivalence_between_heterographs(g1, g3)
    check_equivalence_between_heterographs(g2, g4)

100
101
102

@parametrize_dtype
def test_batching_hetero_and_batched_hetero_topology(index_dtype):
103
104
105
106
    """Test batching a DGLHeteroGraph and a BatchedDGLHeteroGraph."""
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): [(0, 0), (1, 0)]
107
    }, index_dtype=index_dtype)
108
109
110
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): [(0, 0), (1, 0)]
111
    }, index_dtype=index_dtype)
112
113
114
115
    bg1 = dgl.batch_hetero([g1, g2])
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1)],
        ('user', 'plays', 'game'): [(1, 0)]
116
    }, index_dtype=index_dtype)
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    bg2 = dgl.batch_hetero([bg1, g3])
    assert bg2.ntypes == g3.ntypes
    assert bg2.etypes == g3.etypes
    assert bg2.canonical_etypes == g3.canonical_etypes
    assert bg2.batch_size == 3

    # Test number of nodes
    for ntype in bg2.ntypes:
        assert bg2.batch_num_nodes(ntype) == [
            g1.number_of_nodes(ntype), g2.number_of_nodes(ntype), g3.number_of_nodes(ntype)]
        assert bg2.number_of_nodes(ntype) == (
                g1.number_of_nodes(ntype) + g2.number_of_nodes(ntype) + g3.number_of_nodes(ntype))

    # Test number of edges
    for etype in bg2.etypes:
        assert bg2.batch_num_edges(etype) == [
            g1.number_of_edges(etype), g2.number_of_edges(etype), g3.number_of_edges(etype)]
        assert bg2.number_of_edges(etype) == (
                g1.number_of_edges(etype) + g2.number_of_edges(etype) + g3.number_of_edges(etype))

    for etype in bg2.canonical_etypes:
        assert bg2.batch_num_edges(etype) == [
            g1.number_of_edges(etype), g2.number_of_edges(etype), g3.number_of_edges(etype)]
        assert bg2.number_of_edges(etype) == (
                g1.number_of_edges(etype) + g2.number_of_edges(etype) + g3.number_of_edges(etype))

    # Test relabeled nodes
    for ntype in bg2.ntypes:
        assert list(F.asnumpy(bg2.nodes(ntype))) == list(range(bg2.number_of_nodes(ntype)))

    # Test relabeled edges
    src, dst = bg2.all_edges(etype='follows')
    assert list(F.asnumpy(src)) == [0, 1, 3, 4, 6]
    assert list(F.asnumpy(dst)) == [1, 2, 4, 5, 7]
    src, dst = bg2.all_edges(etype='plays')
    assert list(F.asnumpy(src)) == [0, 1, 3, 4, 7]
    assert list(F.asnumpy(dst)) == [0, 0, 1, 1, 2]

    # Test unbatching graphs
    g4, g5, g6 = dgl.unbatch_hetero(bg2)
    check_equivalence_between_heterographs(g1, g4)
    check_equivalence_between_heterographs(g2, g5)
    check_equivalence_between_heterographs(g3, g6)

161
162
@parametrize_dtype
def test_batched_features(index_dtype):
163
164
165
166
    """Test the features of batched DGLHeteroGraphs"""
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): [(0, 0), (1, 0)]
167
    }, index_dtype=index_dtype)
168
169
170
171
172
173
174
175
176
177
178
    g1.nodes['user'].data['h1'] = F.tensor([[0.], [1.], [2.]])
    g1.nodes['user'].data['h2'] = F.tensor([[3.], [4.], [5.]])
    g1.nodes['game'].data['h1'] = F.tensor([[0.]])
    g1.nodes['game'].data['h2'] = F.tensor([[1.]])
    g1.edges['follows'].data['h1'] = F.tensor([[0.], [1.]])
    g1.edges['follows'].data['h2'] = F.tensor([[2.], [3.]])
    g1.edges['plays'].data['h1'] = F.tensor([[0.], [1.]])

    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): [(0, 0), (1, 0)]
179
    }, index_dtype=index_dtype)
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    g2.nodes['user'].data['h1'] = F.tensor([[0.], [1.], [2.]])
    g2.nodes['user'].data['h2'] = F.tensor([[3.], [4.], [5.]])
    g2.nodes['game'].data['h1'] = F.tensor([[0.]])
    g2.nodes['game'].data['h2'] = F.tensor([[1.]])
    g2.edges['follows'].data['h1'] = F.tensor([[0.], [1.]])
    g2.edges['follows'].data['h2'] = F.tensor([[2.], [3.]])
    g2.edges['plays'].data['h1'] = F.tensor([[0.], [1.]])

    bg = dgl.batch_hetero([g1, g2],
                          node_attrs=ALL,
                          edge_attrs={
                              ('user', 'follows', 'user'): 'h1',
                              ('user', 'plays', 'game'): None
                          })

    assert F.allclose(bg.nodes['user'].data['h1'],
                      F.cat([g1.nodes['user'].data['h1'], g2.nodes['user'].data['h1']], dim=0))
    assert F.allclose(bg.nodes['user'].data['h2'],
                      F.cat([g1.nodes['user'].data['h2'], g2.nodes['user'].data['h2']], dim=0))
    assert F.allclose(bg.nodes['game'].data['h1'],
                      F.cat([g1.nodes['game'].data['h1'], g2.nodes['game'].data['h1']], dim=0))
    assert F.allclose(bg.nodes['game'].data['h2'],
                      F.cat([g1.nodes['game'].data['h2'], g2.nodes['game'].data['h2']], dim=0))
    assert F.allclose(bg.edges['follows'].data['h1'],
                      F.cat([g1.edges['follows'].data['h1'], g2.edges['follows'].data['h1']], dim=0))
    assert 'h2' not in bg.edges['follows'].data.keys()
    assert 'h1' not in bg.edges['plays'].data.keys()

    # Test unbatching graphs
    g3, g4 = dgl.unbatch_hetero(bg)
    check_equivalence_between_heterographs(
        g1, g3,
        node_attrs={'user': ['h1', 'h2'], 'game': ['h1', 'h2']},
        edge_attrs={('user', 'follows', 'user'): ['h1']})
    check_equivalence_between_heterographs(
        g2, g4,
        node_attrs={'user': ['h1', 'h2'], 'game': ['h1', 'h2']},
        edge_attrs={('user', 'follows', 'user'): ['h1']})

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
@parametrize_dtype
def test_batching_with_zero_nodes_edges(index_dtype):
    """Test the features of batched DGLHeteroGraphs"""
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): []
    }, index_dtype=index_dtype)
    g1.nodes['user'].data['h1'] = F.tensor([[0.], [1.], [2.]])
    g1.nodes['user'].data['h2'] = F.tensor([[3.], [4.], [5.]])
    g1.edges['follows'].data['h1'] = F.tensor([[0.], [1.]])
    g1.edges['follows'].data['h2'] = F.tensor([[2.], [3.]])

    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): [(0, 0), (1, 0)]
    }, index_dtype=index_dtype)
    g2.nodes['user'].data['h1'] = F.tensor([[0.], [1.], [2.]])
    g2.nodes['user'].data['h2'] = F.tensor([[3.], [4.], [5.]])
    g2.nodes['game'].data['h1'] = F.tensor([[0.]])
    g2.nodes['game'].data['h2'] = F.tensor([[1.]])
    g2.edges['follows'].data['h1'] = F.tensor([[0.], [1.]])
    g2.edges['follows'].data['h2'] = F.tensor([[2.], [3.]])
    g2.edges['plays'].data['h1'] = F.tensor([[0.], [1.]])

    bg = dgl.batch_hetero([g1, g2])

    assert F.allclose(bg.nodes['user'].data['h1'],
                      F.cat([g1.nodes['user'].data['h1'], g2.nodes['user'].data['h1']], dim=0))
    assert F.allclose(bg.nodes['user'].data['h2'],
                      F.cat([g1.nodes['user'].data['h2'], g2.nodes['user'].data['h2']], dim=0))
    assert F.allclose(bg.nodes['game'].data['h1'], g2.nodes['game'].data['h1'])
    assert F.allclose(bg.nodes['game'].data['h2'], g2.nodes['game'].data['h2'])
    assert F.allclose(bg.edges['follows'].data['h1'],
                      F.cat([g1.edges['follows'].data['h1'], g2.edges['follows'].data['h1']], dim=0))
    assert F.allclose(bg.edges['plays'].data['h1'], g2.edges['plays'].data['h1'])

    # Test unbatching graphs
    g3, g4 = dgl.unbatch_hetero(bg)
    check_equivalence_between_heterographs(
        g1, g3,
        node_attrs={'user': ['h1', 'h2'], 'game': ['h1', 'h2']},
        edge_attrs={('user', 'follows', 'user'): ['h1']})
    check_equivalence_between_heterographs(
        g2, g4,
        node_attrs={'user': ['h1', 'h2'], 'game': ['h1', 'h2']},
        edge_attrs={('user', 'follows', 'user'): ['h1']})

    # Test graphs without edges
    g1 = dgl.bipartite([], 'u', 'r', 'v', num_nodes=(0, 4))
    g2 = dgl.bipartite([], 'u', 'r', 'v', num_nodes=(1, 5))
    g2.nodes['u'].data['x'] = F.tensor([1])
    dgl.batch_hetero([g1, g2])

Mufei Li's avatar
Mufei Li committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
@parametrize_dtype
def test_to_device(index_dtype):
    g1 = dgl.heterograph({
        ('user', 'plays', 'game'): [(0, 0), (1, 1)]
    }, index_dtype=index_dtype)
    g1.nodes['user'].data['h1'] = F.copy_to(F.tensor([[0.], [1.]]), F.cpu())
    g1.nodes['user'].data['h2'] = F.copy_to(F.tensor([[3.], [4.]]), F.cpu())
    g1.edges['plays'].data['h1'] = F.copy_to(F.tensor([[2.], [3.]]), F.cpu())

    g2 = dgl.heterograph({
        ('user', 'plays', 'game'): [(0, 0), (1, 0)]
    }, index_dtype=index_dtype)
    g2.nodes['user'].data['h1'] = F.copy_to(F.tensor([[1.], [2.]]), F.cpu())
    g2.nodes['user'].data['h2'] = F.copy_to(F.tensor([[4.], [5.]]), F.cpu())
    g2.edges['plays'].data['h1'] = F.copy_to(F.tensor([[0.], [1.]]), F.cpu())

    bg = dgl.batch_hetero([g1, g2])

    if F.is_cuda_available():
        bg1 = bg.to(F.cuda())
        assert bg1 is not None
        assert bg.batch_size == bg1.batch_size
        assert bg.batch_num_nodes('user') == bg1.batch_num_nodes('user')
        assert bg.batch_num_edges('plays') == bg1.batch_num_edges('plays')

298
299
300
301
if __name__ == '__main__':
    test_batching_hetero_topology()
    test_batching_hetero_and_batched_hetero_topology()
    test_batched_features()
302
    test_batching_with_zero_nodes_edges()
Mufei Li's avatar
Mufei Li committed
303
    # test_to_device()