nodepred.jinja-py 4.33 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
from dgl.data import AsNodePredDataset
{{ data_import_code }}

{{ model_code }}

{% if user_cfg.general_pipeline.early_stop %}
class EarlyStopping:
    def __init__(self,
                 patience: int = -1,
                 checkpoint_path: str = 'checkpoint.pt'):
        self.patience = patience
        self.checkpoint_path = checkpoint_path
        self.counter = 0
        self.best_score = None
        self.early_stop = False

    def step(self, acc, model):
        score = acc
        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(model)
        elif score < self.best_score:
            self.counter += 1
            print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(model)
            self.counter = 0
        return self.early_stop

    def save_checkpoint(self, model):
        '''Save model when validation loss decreases.'''
        torch.save(model.state_dict(), self.checkpoint_path)

    def load_checkpoint(self, model):
        model.load_state_dict(torch.load(self.checkpoint_path))
{% endif %}


def accuracy(logits, labels):
    _, indices = torch.max(logits, dim=1)
    correct = torch.sum(indices == labels)
    return correct.item() * 1.0 / len(labels)

def train(cfg, pipeline_cfg, device, data, model, optimizer, loss_fcn):
    g = data[0]  # Only train on the first graph
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)
    g = g.to(device)

    node_feat = g.ndata.get('feat', None)
    edge_feat = g.edata.get('feat', None)
    label = g.ndata['label']
    train_mask, val_mask, test_mask = g.ndata['train_mask'].bool(), g.ndata['val_mask'].bool(), g.ndata['test_mask'].bool()

    {% if user_cfg.general_pipeline.early_stop %}
    stopper = EarlyStopping(**pipeline_cfg['early_stop'])
    {% endif %}
    val_acc = 0.
    for epoch in range(pipeline_cfg['num_epochs']):
        model.train()
        logits = model(g, node_feat, edge_feat)
        loss = loss_fcn(logits[train_mask], label[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_acc = accuracy(logits[train_mask], label[train_mask])
        if epoch != 0 and epoch % pipeline_cfg['eval_period'] == 0:
            val_acc = accuracy(logits[val_mask], label[val_mask])
            
            {% if user_cfg.general_pipeline.early_stop %}
            if stopper.step(val_acc, model):            
                break
            {% endif %}
        print("Epoch {:05d} | Loss {:.4f} | TrainAcc {:.4f} | ValAcc {:.4f}".
              format(epoch, loss.item(), train_acc, val_acc))

    {% if user_cfg.general_pipeline.early_stop %}
    stopper.load_checkpoint(model)
    {% endif %}
    model.eval()
    with torch.no_grad():
        logits = model(g, node_feat, edge_feat)
        test_acc = accuracy(logits[test_mask], label[test_mask])
    return test_acc

def main():
    {{ user_cfg_str }}
    device = cfg['device']
    pipeline_cfg = cfg['general_pipeline']
    # load data
    data = AsNodePredDataset({{data_initialize_code}})
    # create model
    model_cfg = cfg["model"]
    cfg["model"]["data_info"] = {
        "in_size": model_cfg['embed_size'] if model_cfg['embed_size'] > 0 else data[0].ndata['feat'].shape[1],
        "out_size": data.num_classes,
        "num_nodes": data[0].num_nodes()
    }
    model = {{ model_class_name }}(**cfg["model"])
    model = model.to(device)
    loss = torch.nn.{{ user_cfg.general_pipeline.loss }}()
    optimizer = torch.optim.{{ user_cfg.general_pipeline.optimizer.name }}(model.parameters(), **pipeline_cfg["optimizer"])
    # train
    test_acc = train(cfg, pipeline_cfg, device, data, model, optimizer, loss)
    return test_acc

if __name__ == '__main__':
    all_acc = []
    num_runs = {{ user_cfg.general_pipeline.num_runs }}
    for run in range(num_runs):
        print(f'Run experiment #{run}')
        test_acc = main()
        print("Test Accuracy {:.4f}".format(test_acc))
        all_acc.append(test_acc)
    avg_acc = np.round(np.mean(all_acc), 6)
    std_acc = np.round(np.std(all_acc), 6)
    print(f'Accuracy across {num_runs} runs: {avg_acc} ± {std_acc}')