bipartite.cc 28.5 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2019 by Contributors
 * \file graph/bipartite.cc
 * \brief Bipartite graph implementation
 */
#include <dgl/array.h>
#include <dgl/lazy.h>
#include <dgl/immutable_graph.h>
9
#include <dgl/base_heterograph.h>
10
11
12
13
14

#include "./bipartite.h"
#include "../c_api_common.h"

namespace dgl {
15

16
namespace {
17

18
19
20
21
22
23
24
25
inline GraphPtr CreateBipartiteMetaGraph() {
  std::vector<int64_t> row_vec(1, Bipartite::kSrcVType);
  std::vector<int64_t> col_vec(1, Bipartite::kDstVType);
  IdArray row = aten::VecToIdArray(row_vec);
  IdArray col = aten::VecToIdArray(col_vec);
  GraphPtr g = ImmutableGraph::CreateFromCOO(2, row, col);
  return g;
}
26
27
28
const GraphPtr kBipartiteMetaGraph = CreateBipartiteMetaGraph();

};  // namespace
29
30
31
32
33
34
35
36
37

//////////////////////////////////////////////////////////
//
// COO graph implementation
//
//////////////////////////////////////////////////////////

class Bipartite::COO : public BaseHeteroGraph {
 public:
38
  COO(int64_t num_src, int64_t num_dst, IdArray src, IdArray dst)
39
40
41
    : BaseHeteroGraph(kBipartiteMetaGraph) {
    adj_ = aten::COOMatrix{num_src, num_dst, src, dst};
  }
42
43

  COO(int64_t num_src, int64_t num_dst, IdArray src, IdArray dst, bool is_multigraph)
44
45
46
47
    : BaseHeteroGraph(kBipartiteMetaGraph),
      is_multigraph_(is_multigraph) {
    adj_ = aten::COOMatrix{num_src, num_dst, src, dst};
  }
48
49

  explicit COO(const aten::COOMatrix& coo) : BaseHeteroGraph(kBipartiteMetaGraph), adj_(coo) {}
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

  uint64_t NumVertexTypes() const override {
    return 2;
  }
  uint64_t NumEdgeTypes() const override {
    return 1;
  }

  HeteroGraphPtr GetRelationGraph(dgl_type_t etype) const override {
    LOG(FATAL) << "The method shouldn't be called for Bipartite graph. "
      << "The relation graph is simply this graph itself.";
    return {};
  }

  void AddVertices(dgl_type_t vtype, uint64_t num_vertices) override {
    LOG(FATAL) << "Bipartite graph is not mutable.";
  }

  void AddEdge(dgl_type_t etype, dgl_id_t src, dgl_id_t dst) override {
    LOG(FATAL) << "Bipartite graph is not mutable.";
  }

  void AddEdges(dgl_type_t etype, IdArray src_ids, IdArray dst_ids) override {
    LOG(FATAL) << "Bipartite graph is not mutable.";
  }

  void Clear() override {
    LOG(FATAL) << "Bipartite graph is not mutable.";
  }

  DLContext Context() const override {
    return adj_.row->ctx;
  }

  uint8_t NumBits() const override {
    return adj_.row->dtype.bits;
  }

  bool IsMultigraph() const override {
    return const_cast<COO*>(this)->is_multigraph_.Get([this] () {
        return aten::COOHasDuplicate(adj_);
      });
  }

  bool IsReadonly() const override {
    return true;
  }

  uint64_t NumVertices(dgl_type_t vtype) const override {
    if (vtype == Bipartite::kSrcVType) {
      return adj_.num_rows;
    } else if (vtype == Bipartite::kDstVType) {
      return adj_.num_cols;
    } else {
      LOG(FATAL) << "Invalid vertex type: " << vtype;
      return 0;
    }
  }

  uint64_t NumEdges(dgl_type_t etype) const override {
    return adj_.row->shape[0];
  }

  bool HasVertex(dgl_type_t vtype, dgl_id_t vid) const override {
    return vid < NumVertices(vtype);
  }

  BoolArray HasVertices(dgl_type_t vtype, IdArray vids) const override {
    LOG(FATAL) << "Not enabled for COO graph";
    return {};
  }

  bool HasEdgeBetween(dgl_type_t etype, dgl_id_t src, dgl_id_t dst) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  BoolArray HasEdgesBetween(dgl_type_t etype, IdArray src_ids, IdArray dst_ids) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  IdArray Predecessors(dgl_type_t etype, dgl_id_t dst) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  IdArray Successors(dgl_type_t etype, dgl_id_t src) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  IdArray EdgeId(dgl_type_t etype, dgl_id_t src, dgl_id_t dst) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  EdgeArray EdgeIds(dgl_type_t etype, IdArray src, IdArray dst) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  std::pair<dgl_id_t, dgl_id_t> FindEdge(dgl_type_t etype, dgl_id_t eid) const override {
    CHECK(eid < NumEdges(etype)) << "Invalid edge id: " << eid;
    const auto src = aten::IndexSelect(adj_.row, eid);
    const auto dst = aten::IndexSelect(adj_.col, eid);
    return std::pair<dgl_id_t, dgl_id_t>(src, dst);
  }

  EdgeArray FindEdges(dgl_type_t etype, IdArray eids) const override {
160
    CHECK(aten::IsValidIdArray(eids)) << "Invalid edge id array";
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    return EdgeArray{aten::IndexSelect(adj_.row, eids),
                     aten::IndexSelect(adj_.col, eids),
                     eids};
  }

  EdgeArray InEdges(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  EdgeArray InEdges(dgl_type_t etype, IdArray vids) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  EdgeArray OutEdges(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  EdgeArray OutEdges(dgl_type_t etype, IdArray vids) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  EdgeArray Edges(dgl_type_t etype, const std::string &order = "") const override {
    CHECK(order.empty() || order == std::string("eid"))
      << "COO only support Edges of order \"eid\", but got \""
      << order << "\".";
    IdArray rst_eid = aten::Range(0, NumEdges(etype), NumBits(), Context());
    return EdgeArray{adj_.row, adj_.col, rst_eid};
  }

  uint64_t InDegree(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  DegreeArray InDegrees(dgl_type_t etype, IdArray vids) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  uint64_t OutDegree(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  DegreeArray OutDegrees(dgl_type_t etype, IdArray vids) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  DGLIdIters SuccVec(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  DGLIdIters OutEdgeVec(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  DGLIdIters PredVec(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  DGLIdIters InEdgeVec(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  std::vector<IdArray> GetAdj(
      dgl_type_t etype, bool transpose, const std::string &fmt) const override {
    CHECK(fmt == "coo") << "Not valid adj format request.";
    if (transpose) {
      return {aten::HStack(adj_.col, adj_.row)};
    } else {
      return {aten::HStack(adj_.row, adj_.col)};
    }
  }

  HeteroSubgraph VertexSubgraph(const std::vector<IdArray>& vids) const override {
    LOG(INFO) << "Not enabled for COO graph.";
    return {};
  }

  HeteroSubgraph EdgeSubgraph(
      const std::vector<IdArray>& eids, bool preserve_nodes = false) const override {
    CHECK_EQ(eids.size(), 1) << "Edge type number mismatch.";
    HeteroSubgraph subg;
    if (!preserve_nodes) {
      IdArray new_src = aten::IndexSelect(adj_.row, eids[0]);
      IdArray new_dst = aten::IndexSelect(adj_.col, eids[0]);
      subg.induced_vertices.emplace_back(aten::Relabel_({new_src}));
      subg.induced_vertices.emplace_back(aten::Relabel_({new_dst}));
      const auto new_nsrc = subg.induced_vertices[0]->shape[0];
      const auto new_ndst = subg.induced_vertices[1]->shape[0];
      subg.graph = std::make_shared<COO>(
          new_nsrc, new_ndst, new_src, new_dst);
      subg.induced_edges = eids;
    } else {
      IdArray new_src = aten::IndexSelect(adj_.row, eids[0]);
      IdArray new_dst = aten::IndexSelect(adj_.col, eids[0]);
      subg.induced_vertices.emplace_back(aten::Range(0, NumVertices(0), NumBits(), Context()));
      subg.induced_vertices.emplace_back(aten::Range(0, NumVertices(1), NumBits(), Context()));
      subg.graph = std::make_shared<COO>(
          NumVertices(0), NumVertices(1), new_src, new_dst);
      subg.induced_edges = eids;
    }
    return subg;
  }

  aten::COOMatrix adj() const {
    return adj_;
  }

 private:
  /*! \brief internal adjacency matrix. Data array is empty */
  aten::COOMatrix adj_;

  /*! \brief multi-graph flag */
  Lazy<bool> is_multigraph_;
};

//////////////////////////////////////////////////////////
//
// CSR graph implementation
//
//////////////////////////////////////////////////////////

/*! \brief CSR graph */
class Bipartite::CSR : public BaseHeteroGraph {
 public:
  CSR(int64_t num_src, int64_t num_dst,
      IdArray indptr, IdArray indices, IdArray edge_ids)
    : BaseHeteroGraph(kBipartiteMetaGraph) {
    adj_ = aten::CSRMatrix{num_src, num_dst, indptr, indices, edge_ids};
  }

  CSR(int64_t num_src, int64_t num_dst,
      IdArray indptr, IdArray indices, IdArray edge_ids, bool is_multigraph)
    : BaseHeteroGraph(kBipartiteMetaGraph),
      is_multigraph_(is_multigraph) {
    adj_ = aten::CSRMatrix{num_src, num_dst, indptr, indices, edge_ids};
  }

309
  explicit CSR(const aten::CSRMatrix& csr) : BaseHeteroGraph(kBipartiteMetaGraph), adj_(csr) {}
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

  uint64_t NumVertexTypes() const override {
    return 2;
  }
  uint64_t NumEdgeTypes() const override {
    return 1;
  }

  HeteroGraphPtr GetRelationGraph(dgl_type_t etype) const override {
    LOG(FATAL) << "The method shouldn't be called for Bipartite graph. "
      << "The relation graph is simply this graph itself.";
    return {};
  }

  void AddVertices(dgl_type_t vtype, uint64_t num_vertices) override {
    LOG(FATAL) << "Bipartite graph is not mutable.";
  }

  void AddEdge(dgl_type_t etype, dgl_id_t src, dgl_id_t dst) override {
    LOG(FATAL) << "Bipartite graph is not mutable.";
  }

  void AddEdges(dgl_type_t etype, IdArray src_ids, IdArray dst_ids) override {
    LOG(FATAL) << "Bipartite graph is not mutable.";
  }

  void Clear() override {
    LOG(FATAL) << "Bipartite graph is not mutable.";
  }

  DLContext Context() const override {
    return adj_.indices->ctx;
  }

  uint8_t NumBits() const override {
    return adj_.indices->dtype.bits;
  }

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
  CSR AsNumBits(uint8_t bits) const {
    if (NumBits() == bits) {
      return *this;
    } else {
      CSR ret(
          adj_.num_rows, adj_.num_cols,
          aten::AsNumBits(adj_.indptr, bits),
          aten::AsNumBits(adj_.indices, bits),
          aten::AsNumBits(adj_.data, bits));
      ret.is_multigraph_ = is_multigraph_;
      return ret;
    }
  }

  CSR CopyTo(const DLContext& ctx) const {
    if (Context() == ctx) {
      return *this;
    } else {
      CSR ret(
          adj_.num_rows, adj_.num_cols,
          adj_.indptr.CopyTo(ctx),
          adj_.indices.CopyTo(ctx),
          adj_.data.CopyTo(ctx));
      ret.is_multigraph_ = is_multigraph_;
      return ret;
    }
  }

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
  bool IsMultigraph() const override {
    return const_cast<CSR*>(this)->is_multigraph_.Get([this] () {
        return aten::CSRHasDuplicate(adj_);
      });
  }

  bool IsReadonly() const override {
    return true;
  }

  uint64_t NumVertices(dgl_type_t vtype) const override {
    if (vtype == Bipartite::kSrcVType) {
      return adj_.num_rows;
    } else if (vtype == Bipartite::kDstVType) {
      return adj_.num_cols;
    } else {
      LOG(FATAL) << "Invalid vertex type: " << vtype;
      return 0;
    }
  }

  uint64_t NumEdges(dgl_type_t etype) const override {
    return adj_.indices->shape[0];
  }

  bool HasVertex(dgl_type_t vtype, dgl_id_t vid) const override {
    return vid < NumVertices(vtype);
  }

  BoolArray HasVertices(dgl_type_t vtype, IdArray vids) const override {
    LOG(FATAL) << "Not enabled for COO graph";
    return {};
  }

  bool HasEdgeBetween(dgl_type_t etype, dgl_id_t src, dgl_id_t dst) const override {
    CHECK(HasVertex(0, src)) << "Invalid src vertex id: " << src;
    CHECK(HasVertex(1, dst)) << "Invalid dst vertex id: " << dst;
    return aten::CSRIsNonZero(adj_, src, dst);
  }

  BoolArray HasEdgesBetween(dgl_type_t etype, IdArray src_ids, IdArray dst_ids) const override {
417
418
    CHECK(aten::IsValidIdArray(src_ids)) << "Invalid vertex id array.";
    CHECK(aten::IsValidIdArray(dst_ids)) << "Invalid vertex id array.";
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    return aten::CSRIsNonZero(adj_, src_ids, dst_ids);
  }

  IdArray Predecessors(dgl_type_t etype, dgl_id_t dst) const override {
    LOG(INFO) << "Not enabled for CSR graph.";
    return {};
  }

  IdArray Successors(dgl_type_t etype, dgl_id_t src) const override {
    CHECK(HasVertex(0, src)) << "Invalid src vertex id: " << src;
    return aten::CSRGetRowColumnIndices(adj_, src);
  }

  IdArray EdgeId(dgl_type_t etype, dgl_id_t src, dgl_id_t dst) const override {
    CHECK(HasVertex(0, src)) << "Invalid src vertex id: " << src;
    CHECK(HasVertex(1, dst)) << "Invalid dst vertex id: " << dst;
    return aten::CSRGetData(adj_, src, dst);
  }

  EdgeArray EdgeIds(dgl_type_t etype, IdArray src, IdArray dst) const override {
439
440
    CHECK(aten::IsValidIdArray(src)) << "Invalid vertex id array.";
    CHECK(aten::IsValidIdArray(dst)) << "Invalid vertex id array.";
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    const auto& arrs = aten::CSRGetDataAndIndices(adj_, src, dst);
    return EdgeArray{arrs[0], arrs[1], arrs[2]};
  }

  std::pair<dgl_id_t, dgl_id_t> FindEdge(dgl_type_t etype, dgl_id_t eid) const override {
    LOG(INFO) << "Not enabled for CSR graph.";
    return {};
  }

  EdgeArray FindEdges(dgl_type_t etype, IdArray eids) const override {
    LOG(INFO) << "Not enabled for CSR graph.";
    return {};
  }

  EdgeArray InEdges(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for CSR graph.";
    return {};
  }

  EdgeArray InEdges(dgl_type_t etype, IdArray vids) const override {
    LOG(INFO) << "Not enabled for CSR graph.";
    return {};
  }

  EdgeArray OutEdges(dgl_type_t etype, dgl_id_t vid) const override {
    CHECK(HasVertex(0, vid)) << "Invalid src vertex id: " << vid;
    IdArray ret_dst = aten::CSRGetRowColumnIndices(adj_, vid);
    IdArray ret_eid = aten::CSRGetRowData(adj_, vid);
    IdArray ret_src = aten::Full(vid, ret_dst->shape[0], NumBits(), ret_dst->ctx);
    return EdgeArray{ret_src, ret_dst, ret_eid};
  }

  EdgeArray OutEdges(dgl_type_t etype, IdArray vids) const override {
474
    CHECK(aten::IsValidIdArray(vids)) << "Invalid vertex id array.";
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    auto csrsubmat = aten::CSRSliceRows(adj_, vids);
    auto coosubmat = aten::CSRToCOO(csrsubmat, false);
    // Note that the row id in the csr submat is relabled, so
    // we need to recover it using an index select.
    auto row = aten::IndexSelect(vids, coosubmat.row);
    return EdgeArray{row, coosubmat.col, coosubmat.data};
  }

  EdgeArray Edges(dgl_type_t etype, const std::string &order = "") const override {
    CHECK(order.empty() || order == std::string("srcdst"))
      << "CSR only support Edges of order \"srcdst\","
      << " but got \"" << order << "\".";
    const auto& coo = aten::CSRToCOO(adj_, false);
    return EdgeArray{coo.row, coo.col, coo.data};
  }

  uint64_t InDegree(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for CSR graph.";
    return {};
  }

  DegreeArray InDegrees(dgl_type_t etype, IdArray vids) const override {
    LOG(INFO) << "Not enabled for CSR graph.";
    return {};
  }

  uint64_t OutDegree(dgl_type_t etype, dgl_id_t vid) const override {
    CHECK(HasVertex(0, vid)) << "Invalid src vertex id: " << vid;
    return aten::CSRGetRowNNZ(adj_, vid);
  }

  DegreeArray OutDegrees(dgl_type_t etype, IdArray vids) const override {
507
    CHECK(aten::IsValidIdArray(vids)) << "Invalid vertex id array.";
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
    return aten::CSRGetRowNNZ(adj_, vids);
  }

  DGLIdIters SuccVec(dgl_type_t etype, dgl_id_t vid) const override {
    // TODO(minjie): This still assumes the data type and device context
    //   of this graph. Should fix later.
    const dgl_id_t* indptr_data = static_cast<dgl_id_t*>(adj_.indptr->data);
    const dgl_id_t* indices_data = static_cast<dgl_id_t*>(adj_.indices->data);
    const dgl_id_t start = indptr_data[vid];
    const dgl_id_t end = indptr_data[vid + 1];
    return DGLIdIters(indices_data + start, indices_data + end);
  }

  DGLIdIters OutEdgeVec(dgl_type_t etype, dgl_id_t vid) const override {
    // TODO(minjie): This still assumes the data type and device context
    //   of this graph. Should fix later.
    const dgl_id_t* indptr_data = static_cast<dgl_id_t*>(adj_.indptr->data);
    const dgl_id_t* eid_data = static_cast<dgl_id_t*>(adj_.data->data);
    const dgl_id_t start = indptr_data[vid];
    const dgl_id_t end = indptr_data[vid + 1];
    return DGLIdIters(eid_data + start, eid_data + end);
  }

  DGLIdIters PredVec(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for CSR graph.";
    return {};
  }

  DGLIdIters InEdgeVec(dgl_type_t etype, dgl_id_t vid) const override {
    LOG(INFO) << "Not enabled for CSR graph.";
    return {};
  }

  std::vector<IdArray> GetAdj(
      dgl_type_t etype, bool transpose, const std::string &fmt) const override {
    CHECK(!transpose && fmt == "csr") << "Not valid adj format request.";
    return {adj_.indptr, adj_.indices, adj_.data};
  }

  HeteroSubgraph VertexSubgraph(const std::vector<IdArray>& vids) const override {
    CHECK_EQ(vids.size(), 2) << "Number of vertex types mismatch";
549
550
    CHECK(aten::IsValidIdArray(vids[0])) << "Invalid vertex id array.";
    CHECK(aten::IsValidIdArray(vids[1])) << "Invalid vertex id array.";
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    HeteroSubgraph subg;
    const auto& submat = aten::CSRSliceMatrix(adj_, vids[0], vids[1]);
    IdArray sub_eids = aten::Range(0, submat.data->shape[0], NumBits(), Context());
    subg.graph = std::make_shared<CSR>(submat.num_rows, submat.num_cols,
        submat.indptr, submat.indices, sub_eids);
    subg.induced_vertices = vids;
    subg.induced_edges.emplace_back(submat.data);
    return subg;
  }

  HeteroSubgraph EdgeSubgraph(
      const std::vector<IdArray>& eids, bool preserve_nodes = false) const override {
    LOG(INFO) << "Not enabled for CSR graph.";
    return {};
  }

  aten::CSRMatrix adj() const {
    return adj_;
  }

 private:
  /*! \brief internal adjacency matrix. Data array stores edge ids */
  aten::CSRMatrix adj_;

  /*! \brief multi-graph flag */
  Lazy<bool> is_multigraph_;
};

//////////////////////////////////////////////////////////
//
// bipartite graph implementation
//
//////////////////////////////////////////////////////////

DLContext Bipartite::Context() const {
  return GetAny()->Context();
}

uint8_t Bipartite::NumBits() const {
  return GetAny()->NumBits();
}

bool Bipartite::IsMultigraph() const {
  return GetAny()->IsMultigraph();
}

uint64_t Bipartite::NumVertices(dgl_type_t vtype) const {
  return GetAny()->NumVertices(vtype);
}

uint64_t Bipartite::NumEdges(dgl_type_t etype) const {
  return GetAny()->NumEdges(etype);
}

bool Bipartite::HasVertex(dgl_type_t vtype, dgl_id_t vid) const {
  return GetAny()->HasVertex(vtype, vid);
}

BoolArray Bipartite::HasVertices(dgl_type_t vtype, IdArray vids) const {
610
  CHECK(aten::IsValidIdArray(vids)) << "Invalid id array input";
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
  return aten::LT(vids, NumVertices(vtype));
}

bool Bipartite::HasEdgeBetween(dgl_type_t etype, dgl_id_t src, dgl_id_t dst) const {
  if (in_csr_) {
    return in_csr_->HasEdgeBetween(etype, dst, src);
  } else {
    return GetOutCSR()->HasEdgeBetween(etype, src, dst);
  }
}

BoolArray Bipartite::HasEdgesBetween(
    dgl_type_t etype, IdArray src, IdArray dst) const {
  if (in_csr_) {
    return in_csr_->HasEdgesBetween(etype, dst, src);
  } else {
    return GetOutCSR()->HasEdgesBetween(etype, src, dst);
  }
}

IdArray Bipartite::Predecessors(dgl_type_t etype, dgl_id_t dst) const {
  return GetInCSR()->Successors(etype, dst);
}

IdArray Bipartite::Successors(dgl_type_t etype, dgl_id_t src) const {
  return GetOutCSR()->Successors(etype, src);
}

IdArray Bipartite::EdgeId(dgl_type_t etype, dgl_id_t src, dgl_id_t dst) const {
  if (in_csr_) {
    return in_csr_->EdgeId(etype, dst, src);
  } else {
    return GetOutCSR()->EdgeId(etype, src, dst);
  }
}

EdgeArray Bipartite::EdgeIds(dgl_type_t etype, IdArray src, IdArray dst) const {
  if (in_csr_) {
    EdgeArray edges = in_csr_->EdgeIds(etype, dst, src);
    return EdgeArray{edges.dst, edges.src, edges.id};
  } else {
    return GetOutCSR()->EdgeIds(etype, src, dst);
  }
}

std::pair<dgl_id_t, dgl_id_t> Bipartite::FindEdge(dgl_type_t etype, dgl_id_t eid) const {
  return GetCOO()->FindEdge(etype, eid);
}

EdgeArray Bipartite::FindEdges(dgl_type_t etype, IdArray eids) const {
  return GetCOO()->FindEdges(etype, eids);
}

EdgeArray Bipartite::InEdges(dgl_type_t etype, dgl_id_t vid) const {
  const EdgeArray& ret = GetInCSR()->OutEdges(etype, vid);
  return {ret.dst, ret.src, ret.id};
}

EdgeArray Bipartite::InEdges(dgl_type_t etype, IdArray vids) const {
  const EdgeArray& ret = GetInCSR()->OutEdges(etype, vids);
  return {ret.dst, ret.src, ret.id};
}

EdgeArray Bipartite::OutEdges(dgl_type_t etype, dgl_id_t vid) const {
  return GetOutCSR()->OutEdges(etype, vid);
}

EdgeArray Bipartite::OutEdges(dgl_type_t etype, IdArray vids) const {
  return GetOutCSR()->OutEdges(etype, vids);
}

EdgeArray Bipartite::Edges(dgl_type_t etype, const std::string &order) const {
  if (order.empty()) {
    // arbitrary order
    if (in_csr_) {
      // transpose
      const auto& edges = in_csr_->Edges(etype, order);
      return EdgeArray{edges.dst, edges.src, edges.id};
    } else {
      return GetAny()->Edges(etype, order);
    }
  } else if (order == std::string("srcdst")) {
    // TODO(minjie): CSR only guarantees "src" to be sorted.
    //   Maybe we should relax this requirement?
    return GetOutCSR()->Edges(etype, order);
  } else if (order == std::string("eid")) {
    return GetCOO()->Edges(etype, order);
  } else {
    LOG(FATAL) << "Unsupported order request: " << order;
  }
  return {};
}

uint64_t Bipartite::InDegree(dgl_type_t etype, dgl_id_t vid) const {
  return GetInCSR()->OutDegree(etype, vid);
}

DegreeArray Bipartite::InDegrees(dgl_type_t etype, IdArray vids) const {
  return GetInCSR()->OutDegrees(etype, vids);
}

uint64_t Bipartite::OutDegree(dgl_type_t etype, dgl_id_t vid) const {
  return GetOutCSR()->OutDegree(etype, vid);
}

DegreeArray Bipartite::OutDegrees(dgl_type_t etype, IdArray vids) const {
  return GetOutCSR()->OutDegrees(etype, vids);
}

DGLIdIters Bipartite::SuccVec(dgl_type_t etype, dgl_id_t vid) const {
  return GetOutCSR()->SuccVec(etype, vid);
}

DGLIdIters Bipartite::OutEdgeVec(dgl_type_t etype, dgl_id_t vid) const {
  return GetOutCSR()->OutEdgeVec(etype, vid);
}

DGLIdIters Bipartite::PredVec(dgl_type_t etype, dgl_id_t vid) const {
  return GetInCSR()->SuccVec(etype, vid);
}

DGLIdIters Bipartite::InEdgeVec(dgl_type_t etype, dgl_id_t vid) const {
  return GetInCSR()->OutEdgeVec(etype, vid);
}

std::vector<IdArray> Bipartite::GetAdj(
    dgl_type_t etype, bool transpose, const std::string &fmt) const {
  // TODO(minjie): Our current semantics of adjacency matrix is row for dst nodes and col for
  //   src nodes. Therefore, we need to flip the transpose flag. For example, transpose=False
  //   is equal to in edge CSR.
  //   We have this behavior because previously we use framework's SPMM and we don't cache
  //   reverse adj. This is not intuitive and also not consistent with networkx's
  //   to_scipy_sparse_matrix. With the upcoming custom kernel change, we should change the
  //   behavior and make row for src and col for dst.
  if (fmt == std::string("csr")) {
    return transpose? GetOutCSR()->GetAdj(etype, false, "csr")
      : GetInCSR()->GetAdj(etype, false, "csr");
  } else if (fmt == std::string("coo")) {
    return GetCOO()->GetAdj(etype, !transpose, fmt);
  } else {
    LOG(FATAL) << "unsupported adjacency matrix format: " << fmt;
    return {};
  }
}

HeteroSubgraph Bipartite::VertexSubgraph(const std::vector<IdArray>& vids) const {
  // We prefer to generate a subgraph from out-csr.
  auto sg = GetOutCSR()->VertexSubgraph(vids);
  CSRPtr subcsr = std::dynamic_pointer_cast<CSR>(sg.graph);
  HeteroSubgraph ret;
  ret.graph = HeteroGraphPtr(new Bipartite(nullptr, subcsr, nullptr));
  ret.induced_vertices = std::move(sg.induced_vertices);
  ret.induced_edges = std::move(sg.induced_edges);
  return ret;
}

HeteroSubgraph Bipartite::EdgeSubgraph(
    const std::vector<IdArray>& eids, bool preserve_nodes) const {
  auto sg = GetCOO()->EdgeSubgraph(eids, preserve_nodes);
  COOPtr subcoo = std::dynamic_pointer_cast<COO>(sg.graph);
  HeteroSubgraph ret;
  ret.graph = HeteroGraphPtr(new Bipartite(nullptr, nullptr, subcoo));
  ret.induced_vertices = std::move(sg.induced_vertices);
  ret.induced_edges = std::move(sg.induced_edges);
  return ret;
}

HeteroGraphPtr Bipartite::CreateFromCOO(
    int64_t num_src, int64_t num_dst,
    IdArray row, IdArray col) {
  COOPtr coo(new COO(num_src, num_dst, row, col));
  return HeteroGraphPtr(new Bipartite(nullptr, nullptr, coo));
}

HeteroGraphPtr Bipartite::CreateFromCSR(
    int64_t num_src, int64_t num_dst,
    IdArray indptr, IdArray indices, IdArray edge_ids) {
  CSRPtr csr(new CSR(num_src, num_dst, indptr, indices, edge_ids));
  return HeteroGraphPtr(new Bipartite(nullptr, csr, nullptr));
}

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
HeteroGraphPtr Bipartite::AsNumBits(HeteroGraphPtr g, uint8_t bits) {
  if (g->NumBits() == bits) {
    return g;
  } else {
    // TODO(minjie): since we don't have int32 operations,
    //   we make sure that this graph (on CPU) has materialized CSR,
    //   and then copy them to other context (usually GPU). This should
    //   be fixed later.
    auto bg = std::dynamic_pointer_cast<Bipartite>(g);
    CHECK_NOTNULL(bg);
    CSRPtr new_incsr = CSRPtr(new CSR(bg->GetInCSR()->AsNumBits(bits)));
    CSRPtr new_outcsr = CSRPtr(new CSR(bg->GetOutCSR()->AsNumBits(bits)));
    return HeteroGraphPtr(new Bipartite(new_incsr, new_outcsr, nullptr));
  }
}

HeteroGraphPtr Bipartite::CopyTo(HeteroGraphPtr g, const DLContext& ctx) {
  if (ctx == g->Context()) {
    return g;
  }
  // TODO(minjie): since we don't have GPU implementation of COO<->CSR,
  //   we make sure that this graph (on CPU) has materialized CSR,
  //   and then copy them to other context (usually GPU). This should
  //   be fixed later.
  auto bg = std::dynamic_pointer_cast<Bipartite>(g);
  CHECK_NOTNULL(bg);
  CSRPtr new_incsr = CSRPtr(new CSR(bg->GetInCSR()->CopyTo(ctx)));
  CSRPtr new_outcsr = CSRPtr(new CSR(bg->GetOutCSR()->CopyTo(ctx)));
  return HeteroGraphPtr(new Bipartite(new_incsr, new_outcsr, nullptr));
}

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
Bipartite::Bipartite(CSRPtr in_csr, CSRPtr out_csr, COOPtr coo)
  : BaseHeteroGraph(kBipartiteMetaGraph), in_csr_(in_csr), out_csr_(out_csr), coo_(coo) {
  CHECK(GetAny()) << "At least one graph structure should exist.";
}

Bipartite::CSRPtr Bipartite::GetInCSR() const {
  if (!in_csr_) {
    if (out_csr_) {
      const auto& newadj = aten::CSRTranspose(out_csr_->adj());
      const_cast<Bipartite*>(this)->in_csr_ = std::make_shared<CSR>(newadj);
    } else {
      CHECK(coo_) << "None of CSR, COO exist";
      const auto& adj = coo_->adj();
      const auto& newadj = aten::COOToCSR(
          aten::COOMatrix{adj.num_cols, adj.num_rows, adj.col, adj.row});
      const_cast<Bipartite*>(this)->in_csr_ = std::make_shared<CSR>(newadj);
    }
  }
  return in_csr_;
}

/* !\brief Return out csr. If not exist, transpose the other one.*/
Bipartite::CSRPtr Bipartite::GetOutCSR() const {
  if (!out_csr_) {
    if (in_csr_) {
      const auto& newadj = aten::CSRTranspose(in_csr_->adj());
      const_cast<Bipartite*>(this)->out_csr_ = std::make_shared<CSR>(newadj);
    } else {
      CHECK(coo_) << "None of CSR, COO exist";
      const auto& newadj = aten::COOToCSR(coo_->adj());
      const_cast<Bipartite*>(this)->out_csr_ = std::make_shared<CSR>(newadj);
    }
  }
  return out_csr_;
}

/* !\brief Return coo. If not exist, create from csr.*/
Bipartite::COOPtr Bipartite::GetCOO() const {
  if (!coo_) {
    if (in_csr_) {
      const auto& newadj = aten::CSRToCOO(in_csr_->adj(), true);
      const_cast<Bipartite*>(this)->coo_ = std::make_shared<COO>(
          aten::COOMatrix{newadj.num_cols, newadj.num_rows, newadj.col, newadj.row});
    } else {
      CHECK(out_csr_) << "Both CSR are missing.";
      const auto& newadj = aten::CSRToCOO(out_csr_->adj(), true);
      const_cast<Bipartite*>(this)->coo_ = std::make_shared<COO>(newadj);
    }
  }
  return coo_;
}

875
876
877
878
879
880
881
882
883
884
885
886
aten::CSRMatrix Bipartite::GetInCSRMatrix() const {
  return GetInCSR()->adj();
}

aten::CSRMatrix Bipartite::GetOutCSRMatrix() const {
  return GetOutCSR()->adj();
}

aten::COOMatrix Bipartite::GetCOOMatrix() const {
  return GetCOO()->adj();
}

887
888
889
890
891
892
893
894
895
896
897
HeteroGraphPtr Bipartite::GetAny() const {
  if (in_csr_) {
    return in_csr_;
  } else if (out_csr_) {
    return out_csr_;
  } else {
    return coo_;
  }
}

}  // namespace dgl