modules.py 4.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import math

import dgl.function as fn
import torch
import torch.nn as nn


class GCNLayer(nn.Module):

    def __init__(self,
                 in_feats,
                 out_feats,
                 activation,
                 dropout,
                 bias=True,
                 use_pp=False,
                 use_lynorm=True):
        super(GCNLayer, self).__init__()
        self.weight = nn.Parameter(torch.Tensor(in_feats, out_feats))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_feats))
        else:
            self.bias = None
        self.activation = activation
        self.use_pp = use_pp
        if dropout:
            self.dropout = nn.Dropout(p=dropout)
        else:
            self.dropout = 0.
        if use_lynorm:
            self.lynorm = nn.LayerNorm(out_feats, elementwise_affine=True)
        else:
            self.lynorm = lambda x: x
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, g):
        h = g.ndata['h']

        norm = self.get_norm(g)
        if not self.use_pp or not self.training:
            g.ndata['h'] = h
            g.update_all(fn.copy_src(src='h', out='m'),
                         fn.sum(msg='m', out='h'))
            ah = g.ndata.pop('h')
            h = self.concat(h, ah, norm)

        if self.dropout:
            h = self.dropout(h)
        h = torch.mm(h, self.weight)
        if self.bias is not None:
            h = h + self.bias
        h = self.lynorm(h)
        if self.activation:
            h = self.activation(h)
        return h

    def concat(self, h, ah, norm):
        # normalization by square root of dst degree
        return ah * norm

    def get_norm(self, g):
        norm = 1. / g.in_degrees().float().unsqueeze(1)
        # .sqrt()
        norm[torch.isinf(norm)] = 0
        norm = norm.to(self.weight.device)
        return norm


class GCNCluster(nn.Module):

    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 use_pp):
        super(GCNCluster, self).__init__()
        self.layers = nn.ModuleList()
        # input layer
        self.layers.append(
            GCNLayer(in_feats, n_hidden, activation=activation, dropout=dropout, use_pp=use_pp, use_lynorm=True))
        # hidden layers
        for i in range(n_layers):
            self.layers.append(
                GCNLayer(n_hidden, n_hidden, activation=activation, dropout=dropout, use_lynorm=True
                         ))
        # output layer
        self.layers.append(GCNLayer(n_hidden, n_classes,
                                    activation=None, dropout=dropout, use_lynorm=False))

    def forward(self, g):
        g.ndata['h'] = g.ndata['features']
        for i, layer in enumerate(self.layers):
            g.ndata['h'] = layer(g)
        h = g.ndata.pop('h')
        return h




class GCNLayerSAGE(GCNLayer):

    def __init__(self, *args, **xargs):
        super(GCNLayerSAGE, self).__init__(*args, **xargs)
        in_feats, out_feats = self.weight.shape
        self.weight = nn.Parameter(torch.Tensor(2 * in_feats, out_feats))
        self.reset_parameters()

    def concat(self, h, ah, norm):
        ah = ah * norm
        h = torch.cat((h, ah), dim=1)
        return h

class GraphSAGE(nn.Module):

    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 use_pp):
        super(GraphSAGE, self).__init__()
        self.layers = nn.ModuleList()

        # input layer
        self.layers.append(GCNLayerSAGE(in_feats, n_hidden, activation=activation,
                                        dropout=dropout, use_pp=use_pp, use_lynorm=True))
        # hidden layers
        for i in range(n_layers - 1):
            self.layers.append(
                GCNLayerSAGE(n_hidden, n_hidden, activation=activation, dropout=dropout, use_pp=False, use_lynorm=True))
        # output layer
        self.layers.append(GCNLayerSAGE(n_hidden, n_classes, activation=None,
                                        dropout=dropout, use_pp=False, use_lynorm=False))

    def forward(self, g):
        h = g.ndata['features']
        g.ndata['h'] = h
        for layer in self.layers:
            g.ndata['h'] = layer(g)
        h = g.ndata.pop('h')
        return h