dist_graph.py 19.6 KB
Newer Older
1
2
3
4
5
6
7
"""Define distributed graph."""

from collections.abc import MutableMapping

from ..graph import DGLGraph
from .. import backend as F
from ..base import NID, EID
8
from .kvstore import KVServer, KVClient
9
10
11
12
from ..graph_index import from_shared_mem_graph_index
from .._ffi.ndarray import empty_shared_mem
from ..frame import infer_scheme
from .partition import load_partition
13
from .graph_partition_book import GraphPartitionBook, PartitionPolicy, get_shared_mem_partition_book
14
from .. import utils
15
16
17
18
from .shared_mem_utils import _to_shared_mem, _get_ndata_path, _get_edata_path, DTYPE_DICT
from .rpc_client import connect_to_server
from .server_state import ServerState
from .rpc_server import start_server
19
20
21
22
23
24
25
26
27
28

def _get_graph_path(graph_name):
    return "/" + graph_name

def _copy_graph_to_shared_mem(g, graph_name):
    gidx = g._graph.copyto_shared_mem(_get_graph_path(graph_name))
    new_g = DGLGraph(gidx)
    # We should share the node/edge data to the client explicitly instead of putting them
    # in the KVStore because some of the node/edge data may be duplicated.
    local_node_path = _get_ndata_path(graph_name, 'local_node')
29
30
    new_g.ndata['local_node'] = _to_shared_mem(g.ndata['local_node'],
                                               local_node_path)
31
    local_edge_path = _get_edata_path(graph_name, 'local_edge')
32
33
34
    new_g.edata['local_edge'] = _to_shared_mem(g.edata['local_edge'], local_edge_path)
    new_g.ndata[NID] = _to_shared_mem(g.ndata[NID], _get_ndata_path(graph_name, NID))
    new_g.edata[EID] = _to_shared_mem(g.edata[EID], _get_edata_path(graph_name, EID))
35
36
37
    return new_g

FIELD_DICT = {'local_node': F.int64,
38
              'local_edge': F.int64,
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
              NID: F.int64,
              EID: F.int64}

def _get_ndata_name(name):
    ''' This is to get the name of node data in the kvstore.

    KVStore doesn't understand node data or edge data. We'll use a prefix to distinguish them.
    '''
    return 'node:' + name

def _get_edata_name(name):
    ''' This is to get the name of edge data in the kvstore.

    KVStore doesn't understand node data or edge data. We'll use a prefix to distinguish them.
    '''
    return 'edge:' + name

def _is_ndata_name(name):
    ''' Is this node data in the kvstore '''
    return name[:5] == 'node:'

def _is_edata_name(name):
    ''' Is this edge data in the kvstore '''
    return name[:5] == 'edge:'

def _get_shared_mem_ndata(g, graph_name, name):
    ''' Get shared-memory node data from DistGraph server.

    This is called by the DistGraph client to access the node data in the DistGraph server
    with shared memory.
    '''
    shape = (g.number_of_nodes(),)
    dtype = FIELD_DICT[name]
    dtype = DTYPE_DICT[dtype]
    data = empty_shared_mem(_get_ndata_path(graph_name, name), False, shape, dtype)
    dlpack = data.to_dlpack()
    return F.zerocopy_from_dlpack(dlpack)

def _get_shared_mem_edata(g, graph_name, name):
    ''' Get shared-memory edge data from DistGraph server.

    This is called by the DistGraph client to access the edge data in the DistGraph server
    with shared memory.
    '''
    shape = (g.number_of_edges(),)
    dtype = FIELD_DICT[name]
    dtype = DTYPE_DICT[dtype]
    data = empty_shared_mem(_get_edata_path(graph_name, name), False, shape, dtype)
    dlpack = data.to_dlpack()
    return F.zerocopy_from_dlpack(dlpack)

def _get_graph_from_shared_mem(graph_name):
    ''' Get the graph from the DistGraph server.

    The DistGraph server puts the graph structure of the local partition in the shared memory.
    The client can access the graph structure and some metadata on nodes and edges directly
    through shared memory to reduce the overhead of data access.
    '''
    gidx = from_shared_mem_graph_index(_get_graph_path(graph_name))
    if gidx is None:
        return gidx

    g = DGLGraph(gidx)
    g.ndata['local_node'] = _get_shared_mem_ndata(g, graph_name, 'local_node')
103
    g.edata['local_edge'] = _get_shared_mem_edata(g, graph_name, 'local_edge')
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    g.ndata[NID] = _get_shared_mem_ndata(g, graph_name, NID)
    g.edata[EID] = _get_shared_mem_edata(g, graph_name, EID)
    return g

class DistTensor:
    ''' Distributed tensor.

    This is a wrapper to access a tensor stored in multiple machines.
    This wrapper provides an interface similar to the local tensor.

    Parameters
    ----------
    kv : DistGraph
        The distributed graph object.
    name : string
        The name of the tensor.
    '''
    def __init__(self, g, name):
        self.kvstore = g._client
        self.name = name
        dtype, shape, _ = g._client.get_data_meta(name)
        self._shape = shape
        self._dtype = dtype

    def __getitem__(self, idx):
        return self.kvstore.pull(name=self.name, id_tensor=idx)

    def __setitem__(self, idx, val):
        # TODO(zhengda) how do we want to support broadcast (e.g., G.ndata['h'][idx] = 1).
        self.kvstore.push(name=self.name, id_tensor=idx, data_tensor=val)

    def __len__(self):
        return self._shape[0]

    @property
    def shape(self):
        ''' Return the shape of the distributed tensor. '''
        return self._shape

    @property
    def dtype(self):
        ''' Return the data type of the distributed tensor. '''
        return self._dtype


class NodeDataView(MutableMapping):
    """The data view class when dist_graph.ndata[...].data is called.
    """
    __slots__ = ['_graph', '_data']

    def __init__(self, g):
        self._graph = g
        # When this is created, the server may already load node data. We need to
        # initialize the node data in advance.
        names = g._get_all_ndata_names()
        self._data = {name: DistTensor(g, _get_ndata_name(name)) for name in names}

    def _get_names(self):
        return list(self._data.keys())

    def _add(self, name):
        self._data[name] = DistTensor(self._graph, _get_ndata_name(name))

    def __getitem__(self, key):
        return self._data[key]

    def __setitem__(self, key, val):
        raise DGLError("DGL doesn't support assignment. "
                       + "Please call init_ndata to initialize new node data.")

    def __delitem__(self, key):
        #TODO(zhengda) how to delete data in the kvstore.
        raise NotImplementedError("delete node data isn't supported yet")

    def __len__(self):
        # The number of node data may change. Let's count it every time we need them.
        # It's not called frequently. It should be fine.
        return len(self._data)

    def __iter__(self):
        return iter(self._data)

    def __repr__(self):
        reprs = {}
        for name in self._data:
            dtype = F.dtype(self._data[name])
            shape = F.shape(self._data[name])
            reprs[name] = 'DistTensor(shape={}, dtype={})'.format(str(shape), str(dtype))
        return repr(reprs)

class EdgeDataView(MutableMapping):
    """The data view class when G.edges[...].data is called.
    """
    __slots__ = ['_graph', '_data']

    def __init__(self, g):
        self._graph = g
        # When this is created, the server may already load edge data. We need to
        # initialize the edge data in advance.
        names = g._get_all_edata_names()
        self._data = {name: DistTensor(g, _get_edata_name(name)) for name in names}

    def _get_names(self):
        return list(self._data.keys())

    def _add(self, name):
        self._data[name] = DistTensor(self._graph, _get_edata_name(name))

    def __getitem__(self, key):
        return self._data[key]

    def __setitem__(self, key, val):
        raise DGLError("DGL doesn't support assignment. "
                       + "Please call init_edata to initialize new edge data.")

    def __delitem__(self, key):
        #TODO(zhengda) how to delete data in the kvstore.
        raise NotImplementedError("delete edge data isn't supported yet")

    def __len__(self):
        # The number of edge data may change. Let's count it every time we need them.
        # It's not called frequently. It should be fine.
        return len(self._data)

    def __iter__(self):
        return iter(self._data)

    def __repr__(self):
        reprs = {}
        for name in self._data:
            dtype = F.dtype(self._data[name])
            shape = F.shape(self._data[name])
            reprs[name] = 'DistTensor(shape={}, dtype={})'.format(str(shape), str(dtype))
        return repr(reprs)


class DistGraphServer(KVServer):
    ''' The DistGraph server.

    This DistGraph server loads the graph data and sets up a service so that clients can read data
    of a graph partition (graph structure, node data and edge data) from remote machines.
    A server is responsible for one graph partition.

    Currently, each machine runs only one main server with a set of backup servers to handle
    clients' requests. The main server and the backup servers all handle the requests for the same
    graph partition. They all share the partition data (graph structure and node/edge data) with
    shared memory.

    In addition, the partition data is also shared with the DistGraph clients that run on
    the same machine.

    Parameters
    ----------
    server_id : int
        The server ID (start from 0).
259
260
261
    ip_config : str
        Path of IP configuration file.
    num_clients : int
262
263
264
265
266
267
        Total number of client nodes.
    graph_name : string
        The name of the graph. The server and the client need to specify the same graph name.
    conf_file : string
        The path of the config file generated by the partition tool.
    '''
268
269
270
271
    def __init__(self, server_id, ip_config, num_clients, graph_name, conf_file):
        super(DistGraphServer, self).__init__(server_id=server_id, ip_config=ip_config,
                                              num_clients=num_clients)
        self.ip_config = ip_config
272

273
        # Load graph partition data.
274
        self.client_g, node_feats, edge_feats, self.meta = load_partition(conf_file, server_id)
275
        _, _, node_map, edge_map, num_partitions = self.meta
276
277
        self.client_g = _copy_graph_to_shared_mem(self.client_g, graph_name)

278
279
280
281
282
283
284
        # Init kvstore.
        self.gpb = GraphPartitionBook(server_id, num_partitions, node_map, edge_map, self.client_g)
        self.gpb.shared_memory(graph_name)
        self.add_part_policy(PartitionPolicy('node', server_id, self.gpb))
        self.add_part_policy(PartitionPolicy('edge', server_id, self.gpb))

        if not self.is_backup_server():
285
            for name in node_feats:
286
287
                self.init_data(name=_get_ndata_name(name), policy_str='node',
                               data_tensor=node_feats[name])
288
            for name in edge_feats:
289
290
                self.init_data(name=_get_edata_name(name), policy_str='edge',
                               data_tensor=edge_feats[name])
291
292
        else:
            for name in node_feats:
293
                self.init_data(name=_get_ndata_name(name), policy_str='node')
294
            for name in edge_feats:
295
296
297
298
299
300
301
302
303
304
305
306
                self.init_data(name=_get_edata_name(name), policy_str='edge')

    def start(self):
        """ Start graph store server.
        """
        # start server
        server_state = ServerState(kv_store=self)
        start_server(server_id=0, ip_config=self.ip_config,
                     num_clients=self.num_clients, server_state=server_state)

def _default_init_data(shape, dtype):
    return F.zeros(shape, dtype, F.cpu())
307

308
309
310
311
312
313
314
315
316
class DistGraph:
    ''' The DistGraph client.

    This provides the graph interface to access the partitioned graph data for distributed GNN
    training. All data of partitions are loaded by the DistGraph server. The client doesn't need
    to load any data.

    Parameters
    ----------
317
318
    ip_config : str
        Path of IP configuration file.
319
320
321
    graph_name : str
        The name of the graph. This name has to be the same as the one used in DistGraphServer.
    '''
322
323
324
    def __init__(self, ip_config, graph_name):
        connect_to_server(ip_config=ip_config)
        self._client = KVClient(ip_config)
325

326
        self._g = _get_graph_from_shared_mem(graph_name)
327
        self._gpb = get_shared_mem_partition_book(graph_name, self._g)
328
        self._client.barrier()
329
        self._client.map_shared_data(self._gpb)
330
331
        self._ndata = NodeDataView(self)
        self._edata = EdgeDataView(self)
332
333
        self._default_init_ndata = _default_init_data
        self._default_init_edata = _default_init_data
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350


    def init_ndata(self, ndata_name, shape, dtype):
        '''Initialize node data

        This initializes the node data in the distributed graph storage.

        Parameters
        ----------
        name : string
            The name of the node data.
        shape : tuple
            The shape of the node data.
        dtype : dtype
            The data type of the node data.
        '''
        assert shape[0] == self.number_of_nodes()
351
352
        self._client.init_data(_get_ndata_name(ndata_name), shape, dtype, 'node', self._gpb,
                               self._default_init_ndata)
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        self._ndata._add(ndata_name)

    def init_edata(self, edata_name, shape, dtype):
        '''Initialize edge data

        This initializes the edge data in the distributed graph storage.

        Parameters
        ----------
        name : string
            The name of the edge data.
        shape : tuple
            The shape of the edge data.
        dtype : dtype
            The data type of the edge data.
        '''
        assert shape[0] == self.number_of_edges()
370
371
        self._client.init_data(_get_edata_name(edata_name), shape, dtype, 'edge', self._gpb,
                               self._default_init_edata)
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        self._edata._add(edata_name)

    def init_node_emb(self, name, shape, dtype, initializer):
        ''' Initialize node embeddings.

        This initializes the node embeddings in the distributed graph storage.

        Parameters
        ----------
        name : string
            The name of the node embeddings.
        shape : tuple
            The shape of the node embeddings.
        dtype : string
            The data type of the node embeddings.
        initializer : callable
            The initializer.
        '''
        # TODO(zhengda)
        raise NotImplementedError("init_node_emb isn't supported yet")

    def get_node_embeddings(self):
        ''' Return node embeddings

        Returns
        -------
        a dict of SparseEmbedding
            All node embeddings in the graph store.
        '''
        # TODO(zhengda)
        raise NotImplementedError("get_node_embeddings isn't supported yet")

    @property
    def ndata(self):
        """Return the data view of all the nodes.

        Returns
        -------
        NodeDataView
            The data view in the distributed graph storage.
        """
        return self._ndata

    @property
    def edata(self):
        """Return the data view of all the edges.

        Returns
        -------
        EdgeDataView
            The data view in the distributed graph storage.
        """
        return self._edata

    def number_of_nodes(self):
        """Return the number of nodes"""
428
        return self._gpb.num_nodes()
429
430
431

    def number_of_edges(self):
        """Return the number of edges"""
432
        return self._gpb.num_edges()
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

    def node_attr_schemes(self):
        """Return the node feature and embedding schemes."""
        schemes = {}
        for key in self.ndata:
            schemes[key] = infer_scheme(self.ndata[key])
        return schemes

    def edge_attr_schemes(self):
        """Return the edge feature and embedding schemes."""
        schemes = {}
        for key in self.edata:
            schemes[key] = infer_scheme(self.edata[key])
        return schemes

    def rank(self):
        ''' The rank of the distributed graph store.

        Returns
        -------
        int
            The rank of the current graph store.
        '''
456
        return self._client.client_id
457
458
459
460
461
462
463
464
465
466

    def get_partition_book(self):
        """Get the partition information.

        Returns
        -------
        GraphPartitionBook
            Object that stores all kinds of partition information.
        """
        return self._gpb
467
468
469
470

    def _get_all_ndata_names(self):
        ''' Get the names of all node data.
        '''
471
        names = self._client.data_name_list()
472
473
474
475
476
477
478
479
480
481
        ndata_names = []
        for name in names:
            if _is_ndata_name(name):
                # Remove the prefix "node:"
                ndata_names.append(name[5:])
        return ndata_names

    def _get_all_edata_names(self):
        ''' Get the names of all edge data.
        '''
482
        names = self._client.data_name_list()
483
484
485
486
487
488
        edata_names = []
        for name in names:
            if _is_edata_name(name):
                # Remove the prefix "edge:"
                edata_names.append(name[5:])
        return edata_names
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

def _get_overlap(mask_arr, ids):
    """ Select the Ids given a boolean mask array.

    The boolean mask array indicates all of the Ids to be selected. We want to
    find the overlap between the Ids selected by the boolean mask array and
    the Id array.

    Parameters
    ----------
    mask_arr : 1D tensor
        A boolean mask array.
    ids : 1D tensor
        A vector with Ids.

    Returns
    -------
    1D tensor
        The selected Ids.
    """
    if isinstance(mask_arr, DistTensor):
        masks = mask_arr[ids]
        return F.boolean_mask(ids, masks)
    else:
        mask_arr = utils.toindex(mask_arr)
        masks = F.gather_row(mask_arr.tousertensor(), ids)
        return F.boolean_mask(ids, masks)

def node_split(nodes, partition_book, rank):
    ''' Split nodes and return a subset for the local rank.

    This function splits the input nodes based on the partition book and
    returns a subset of nodes for the local rank. This method is used for
    dividing workloads for distributed training.

    The input nodes can be stored as a vector of masks. The length of the vector is
    the same as the number of nodes in a graph; 1 indicates that the vertex in
    the corresponding location exists.

    Parameters
    ----------
    nodes : 1D tensor or DistTensor
        A boolean mask vector that indicates input nodes.
    partition_book : GraphPartitionBook
        The graph partition book
    rank : int
        The rank of the current process

    Returns
    -------
    1D-tensor
        The vector of node Ids that belong to the rank.
    '''
    num_nodes = 0
    for part in partition_book.metadata():
        num_nodes += part['num_nodes']
    assert len(nodes) == num_nodes, \
            'The length of boolean mask vector should be the number of nodes in the graph.'
    # Get all nodes that belong to the rank.
    local_nids = partition_book.partid2nids(rank)
    return _get_overlap(nodes, local_nids)

def edge_split(edges, partition_book, rank):
    ''' Split edges and return a subset for the local rank.

    This function splits the input edges based on the partition book and
    returns a subset of edges for the local rank. This method is used for
    dividing workloads for distributed training.

    The input edges can be stored as a vector of masks. The length of the vector is
    the same as the number of edges in a graph; 1 indicates that the edge in
    the corresponding location exists.

    Parameters
    ----------
    edges : 1D tensor or DistTensor
        A boolean mask vector that indicates input nodes.
    partition_book : GraphPartitionBook
        The graph partition book
    rank : int
        The rank of the current process

    Returns
    -------
    1D-tensor
        The vector of edge Ids that belong to the rank.
    '''
    num_edges = 0
    for part in partition_book.metadata():
        num_edges += part['num_edges']
    assert len(edges) == num_edges, \
            'The length of boolean mask vector should be the number of edges in the graph.'
    # Get all edges that belong to the rank.
    local_eids = partition_book.partid2eids(rank)
    return _get_overlap(edges, local_eids)