"vscode:/vscode.git/clone" did not exist on "7937a886b2da950f5f17d4c3f788b4cbfda398e7"
train.py 6.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
"""
Graph Representation Learning via Hard Attention Networks in DGL using Adam optimization.
References
----------
Paper: https://arxiv.org/abs/1907.04652
"""

import argparse
import time
10

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
11
12
import dgl

13
import numpy as np
14
15
import torch
import torch.nn.functional as F
16
17
18
19
20
21
from dgl.data import (
    CiteseerGraphDataset,
    CoraGraphDataset,
    PubmedGraphDataset,
    register_data_args,
)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
22
23
from hgao import HardGAT
from utils import EarlyStopping
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

def accuracy(logits, labels):
    _, indices = torch.max(logits, dim=1)
    correct = torch.sum(indices == labels)
    return correct.item() * 1.0 / len(labels)


def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        return accuracy(logits, labels)


def main(args):
    # load and preprocess dataset
43
    if args.dataset == "cora":
44
        data = CoraGraphDataset()
45
    elif args.dataset == "citeseer":
46
        data = CiteseerGraphDataset()
47
    elif args.dataset == "pubmed":
48
49
        data = PubmedGraphDataset()
    else:
50
51
52
        raise ValueError("Unknown dataset: {}".format(args.dataset))

    if args.num_layers <= 0:
53
54
55
56
57
58
        raise ValueError("num layer must be positive int")
    g = data[0]
    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
59
        g = g.to(args.gpu)
60

61
62
63
64
65
    features = g.ndata["feat"]
    labels = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]
66
67
    num_feats = features.shape[1]
    n_classes = data.num_labels
68
    n_edges = g.num_edges()
69
70
    print(
        """----Data statistics------'
71
72
73
74
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
75
76
77
78
79
80
81
82
83
      #Test samples %d"""
        % (
            n_edges,
            n_classes,
            train_mask.int().sum().item(),
            val_mask.int().sum().item(),
            test_mask.int().sum().item(),
        )
    )
84
85
86
87

    # add self loop
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)
88
    n_edges = g.num_edges()
89
90
    # create model
    heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    model = HardGAT(
        g,
        args.num_layers,
        num_feats,
        args.num_hidden,
        n_classes,
        heads,
        F.elu,
        args.in_drop,
        args.attn_drop,
        args.negative_slope,
        args.residual,
        args.k,
    )
105
106
107
108
109
110
111
112
113
    print(model)
    if args.early_stop:
        stopper = EarlyStopping(patience=100)
    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(
114
115
        model.parameters(), lr=args.lr, weight_decay=args.weight_decay
    )
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    # initialize graph
    dur = []
    for epoch in range(args.epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        train_acc = accuracy(logits[train_mask], labels[train_mask])

        if args.fastmode:
            val_acc = accuracy(logits[val_mask], labels[val_mask])
        else:
            val_acc = evaluate(model, features, labels, val_mask)
            if args.early_stop:
                if stopper.step(val_acc, model):
                    break

144
145
146
147
148
149
150
151
152
153
154
        print(
            "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |"
            " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".format(
                epoch,
                np.mean(dur),
                loss.item(),
                train_acc,
                val_acc,
                n_edges / np.mean(dur) / 1000,
            )
        )
155
156
157

    print()
    if args.early_stop:
158
        model.load_state_dict(torch.load("es_checkpoint.pt"))
159
160
161
162
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))


163
164
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="GAT")
165
    register_data_args(parser)
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    parser.add_argument(
        "--gpu",
        type=int,
        default=-1,
        help="which GPU to use. Set -1 to use CPU.",
    )
    parser.add_argument(
        "--epochs", type=int, default=200, help="number of training epochs"
    )
    parser.add_argument(
        "--num-heads",
        type=int,
        default=8,
        help="number of hidden attention heads",
    )
    parser.add_argument(
        "--num-out-heads",
        type=int,
        default=1,
        help="number of output attention heads",
    )
    parser.add_argument(
        "--num-layers", type=int, default=1, help="number of hidden layers"
    )
    parser.add_argument(
        "--num-hidden", type=int, default=8, help="number of hidden units"
    )
    parser.add_argument(
        "--residual",
        action="store_true",
        default=False,
        help="use residual connection",
    )
    parser.add_argument(
        "--in-drop", type=float, default=0.6, help="input feature dropout"
    )
    parser.add_argument(
        "--attn-drop", type=float, default=0.6, help="attention dropout"
    )
    parser.add_argument("--lr", type=float, default=0.01, help="learning rate")
    parser.add_argument(
        "--weight-decay", type=float, default=5e-4, help="weight decay"
    )
    parser.add_argument(
        "--negative-slope",
        type=float,
        default=0.2,
        help="the negative slope of leaky relu",
    )
    parser.add_argument(
        "--early-stop",
        action="store_true",
        default=False,
        help="indicates whether to use early stop or not",
    )
    parser.add_argument(
        "--fastmode",
        action="store_true",
        default=False,
        help="skip re-evaluate the validation set",
    )
    parser.add_argument(
        "--k",
        type=int,
        default=8,
        help="top k neighor for attention calculation",
    )
233
234
235
236
    args = parser.parse_args()
    print(args)

    main(args)