entity_sample.py 6.53 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
Differences compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
import argparse
import torch as th
import torch.nn.functional as F
import dgl

from dgl.dataloading import MultiLayerNeighborSampler, NodeDataLoader
from torchmetrics.functional import accuracy
from tqdm import tqdm

from entity_utils import load_data
from model import RelGraphEmbedLayer, RGCN

def init_dataloaders(args, g, train_idx, test_idx, target_idx, device, use_ddp=False):
    fanouts = [int(fanout) for fanout in args.fanout.split(',')]
    sampler = MultiLayerNeighborSampler(fanouts)

    train_loader = NodeDataLoader(
        g,
        target_idx[train_idx],
        sampler,
        use_ddp=use_ddp,
        device=device,
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False)

    # The datasets do not have a validation subset, use the train subset
    val_loader = NodeDataLoader(
        g,
        target_idx[train_idx],
        sampler,
        use_ddp=use_ddp,
        device=device,
        batch_size=args.batch_size,
        shuffle=False,
        drop_last=False)

    # -1 for sampling all neighbors
    test_sampler = MultiLayerNeighborSampler([-1] * len(fanouts))
    test_loader = NodeDataLoader(
        g,
        target_idx[test_idx],
        test_sampler,
        use_ddp=use_ddp,
        device=device,
        batch_size=32,
        shuffle=False,
        drop_last=False)

    return train_loader, val_loader, test_loader

def init_models(args, device, num_nodes, num_classes, num_rels):
    embed_layer = RelGraphEmbedLayer(device,
                                     num_nodes,
                                     args.n_hidden)

    model = RGCN(args.n_hidden,
                 args.n_hidden,
                 num_classes,
                 num_rels,
                 num_bases=args.n_bases,
                 dropout=args.dropout,
                 self_loop=args.use_self_loop)

    return embed_layer, model

def process_batch(inv_target, batch):
    _, seeds, blocks = batch
    # map the seed nodes back to their type-specific ids,
    # in order to get the target node labels
    seeds = inv_target[seeds]

    for blc in blocks:
        blc.edata['norm'] = dgl.norm_by_dst(blc).unsqueeze(1)

    return seeds, blocks

def train(model, embed_layer, train_loader, inv_target,
          labels, emb_optimizer, optimizer):
    model.train()
    embed_layer.train()

    for sample_data in train_loader:
        seeds, blocks = process_batch(inv_target, sample_data)
        feats = embed_layer(blocks[0].srcdata[dgl.NID].cpu())
        logits = model(blocks, feats)
        loss = F.cross_entropy(logits, labels[seeds])
        emb_optimizer.zero_grad()
        optimizer.zero_grad()

        loss.backward()
        emb_optimizer.step()
        optimizer.step()

        train_acc = accuracy(logits.argmax(dim=1), labels[seeds]).item()

    return train_acc, loss.item()

def evaluate(model, embed_layer, eval_loader, inv_target):
    model.eval()
    embed_layer.eval()
    eval_logits = []
    eval_seeds = []

    with th.no_grad():
        for sample_data in tqdm(eval_loader):
            seeds, blocks = process_batch(inv_target, sample_data)
            feats = embed_layer(blocks[0].srcdata[dgl.NID].cpu())
            logits = model(blocks, feats)
            eval_logits.append(logits.cpu().detach())
            eval_seeds.append(seeds.cpu().detach())

    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)

    return eval_logits, eval_seeds

def main(args):
    g, num_rels, num_classes, labels, train_idx, test_idx, target_idx, inv_target = load_data(
        args.dataset, inv_target=True)

    if args.gpu >= 0 and th.cuda.is_available():
        device = th.device(args.gpu)
    else:
        device = th.device('cpu')

    train_loader, val_loader, test_loader = init_dataloaders(
        args, g, train_idx, test_idx, target_idx, args.gpu)
    embed_layer, model = init_models(args, device, g.num_nodes(), num_classes, num_rels)

    labels = labels.to(device)
    model = model.to(device)

    emb_optimizer = th.optim.SparseAdam(embed_layer.parameters(), lr=args.sparse_lr)
    optimizer = th.optim.Adam(model.parameters(), lr=1e-2, weight_decay=args.l2norm)

    for epoch in range(args.n_epochs):
        train_acc, loss = train(model, embed_layer, train_loader, inv_target,
                                labels, emb_optimizer, optimizer)
        print("Epoch {:05d}/{:05d} | Train Accuracy: {:.4f} | Train Loss: {:.4f}".format(
            epoch, args.n_epochs, train_acc, loss))

        val_logits, val_seeds = evaluate(model, embed_layer, val_loader, inv_target)
        val_acc = accuracy(val_logits.argmax(dim=1), labels[val_seeds].cpu()).item()
        print("Validation Accuracy: {:.4f}".format(val_acc))

    test_logits, test_seeds = evaluate(model, embed_layer,
                                       test_loader, inv_target)
    test_acc = accuracy(test_logits.argmax(dim=1), labels[test_seeds].cpu()).item()
    print("Final Test Accuracy: {:.4f}".format(test_acc))

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN for entity classification with sampling')
    parser.add_argument("--dropout", type=float, default=0,
                        help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=0,
                        help="gpu")
    parser.add_argument("--sparse-lr", type=float, default=2e-2,
                        help="sparse embedding learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
                        help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-epochs", type=int, default=50,
                        help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
                        choices=['aifb', 'mutag', 'bgs', 'am'],
                        help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=5e-4,
                        help="l2 norm coef")
    parser.add_argument("--fanout", type=str, default="4, 4",
                        help="Fan-out of neighbor sampling")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
                        help="include self feature as a special relation")
    parser.add_argument("--batch-size", type=int, default=100,
                        help="Mini-batch size")
    args = parser.parse_args()

    print(args)
    main(args)