parser.py 2.83 KB
Newer Older
kitaev-chen's avatar
kitaev-chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
"""Parser for arguments

Put all arguments in one file and group similar arguments
"""
import argparse


class Parser():

    def __init__(self, description):
        '''
           arguments parser
        '''
        self.parser = argparse.ArgumentParser(description=description)
        self.args = None
        self._parse()

    def _parse(self):
        # dataset
        self.parser.add_argument(
            '--dataset', type=str, default="MUTAG",
Mufei Li's avatar
Mufei Li committed
22
            choices=['MUTAG', 'COLLAB', 'IMDBBINARY', 'IMDBMULTI'],
kitaev-chen's avatar
kitaev-chen committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
            help='name of dataset (default: MUTAG)')
        self.parser.add_argument(
            '--batch_size', type=int, default=32,
            help='batch size for training and validation (default: 32)')
        self.parser.add_argument(
            '--fold_idx', type=int, default=0,
            help='the index(<10) of fold in 10-fold validation.')
        self.parser.add_argument(
            '--filename', type=str, default="",
            help='output file')

        # device
        self.parser.add_argument(
            '--disable-cuda', action='store_true',
            help='Disable CUDA')
        self.parser.add_argument(
            '--device', type=int, default=0,
            help='which gpu device to use (default: 0)')

        # net
        self.parser.add_argument(
            '--num_layers', type=int, default=5,
            help='number of layers (default: 5)')
        self.parser.add_argument(
            '--num_mlp_layers', type=int, default=2,
            help='number of MLP layers(default: 2). 1 means linear model.')
        self.parser.add_argument(
            '--hidden_dim', type=int, default=64,
            help='number of hidden units (default: 64)')

        # graph
        self.parser.add_argument(
            '--graph_pooling_type', type=str,
            default="sum", choices=["sum", "mean", "max"],
            help='type of graph pooling: sum, mean or max')
        self.parser.add_argument(
            '--neighbor_pooling_type', type=str,
            default="sum", choices=["sum", "mean", "max"],
            help='type of neighboring pooling: sum, mean or max')
        self.parser.add_argument(
            '--learn_eps', action="store_true",
            help='learn the epsilon weighting')

        # learning
        self.parser.add_argument(
            '--seed', type=int, default=0,
            help='random seed (default: 0)')
        self.parser.add_argument(
            '--epochs', type=int, default=350,
            help='number of epochs to train (default: 350)')
        self.parser.add_argument(
            '--lr', type=float, default=0.01,
            help='learning rate (default: 0.01)')
        self.parser.add_argument(
            '--final_dropout', type=float, default=0.5,
            help='final layer dropout (default: 0.5)')

        # done
        self.args = self.parser.parse_args()