test_minibatch_sampler.py 15.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import dgl
import pytest
import torch
from dgl import graphbolt as gb
from torch.testing import assert_close


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
11
12
def test_ItemSet_node_ids(batch_size, shuffle, drop_last):
    # Node IDs.
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    num_ids = 103
    item_set = gb.ItemSet(torch.arange(0, num_ids))
    minibatch_sampler = gb.MinibatchSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, minibatch in enumerate(minibatch_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            assert len(minibatch) == batch_size
        else:
            if not drop_last:
                assert len(minibatch) == num_ids % batch_size
            else:
                assert False
        minibatch_ids.append(minibatch)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_graphs(batch_size, shuffle, drop_last):
    # Graphs.
    num_graphs = 103
    num_nodes = 10
    num_edges = 20
    graphs = [
        dgl.rand_graph(num_nodes * (i + 1), num_edges * (i + 1))
        for i in range(num_graphs)
    ]
    item_set = gb.ItemSet(graphs)
    minibatch_sampler = gb.MinibatchSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_num_nodes = []
    minibatch_num_edges = []
    for i, minibatch in enumerate(minibatch_sampler):
        is_last = (i + 1) * batch_size >= num_graphs
        if not is_last or num_graphs % batch_size == 0:
            assert minibatch.batch_size == batch_size
        else:
            if not drop_last:
                assert minibatch.batch_size == num_graphs % batch_size
            else:
                assert False
        minibatch_num_nodes.append(minibatch.batch_num_nodes())
        minibatch_num_edges.append(minibatch.batch_num_edges())
    minibatch_num_nodes = torch.cat(minibatch_num_nodes)
    minibatch_num_edges = torch.cat(minibatch_num_edges)
    assert (
        torch.all(minibatch_num_nodes[:-1] <= minibatch_num_nodes[1:])
        is not shuffle
    )
    assert (
        torch.all(minibatch_num_edges[:-1] <= minibatch_num_edges[1:])
        is not shuffle
    )


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs(batch_size, shuffle, drop_last):
    # Node pairs.
    num_ids = 103
    node_pairs = (torch.arange(0, num_ids), torch.arange(num_ids, num_ids * 2))
    item_set = gb.ItemSet(node_pairs)
    minibatch_sampler = gb.MinibatchSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    for i, (src, dst) in enumerate(minibatch_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        # Verify src and dst IDs match.
        assert torch.equal(src + num_ids, dst)
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_node_pairs_labels(batch_size, shuffle, drop_last):
    # Node pairs and labels
    num_ids = 103
    node_pairs = (torch.arange(0, num_ids), torch.arange(num_ids, num_ids * 2))
    labels = torch.arange(0, num_ids)
    item_set = gb.ItemSet((node_pairs[0], node_pairs[1], labels))
    minibatch_sampler = gb.MinibatchSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
    for i, (src, dst, label) in enumerate(minibatch_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        # Verify src/dst IDs and labels match.
        assert torch.equal(src + num_ids, dst)
        assert torch.equal(src, label)
        # Archive batch.
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
def test_ItemSet_head_tail_neg_tails(batch_size, shuffle, drop_last):
    # Head, tail and negative tails.
    num_ids = 103
    num_negs = 2
    heads = torch.arange(0, num_ids)
    tails = torch.arange(num_ids, num_ids * 2)
    neg_tails = torch.stack((heads + 1, heads + 2), dim=-1)
    item_set = gb.ItemSet((heads, tails, neg_tails))
    for i, (head, tail, negs) in enumerate(item_set):
        assert heads[i] == head
        assert tails[i] == tail
        assert torch.equal(neg_tails[i], negs)
    minibatch_sampler = gb.MinibatchSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    head_ids = []
    tail_ids = []
    negs_ids = []
    for i, (head, tail, negs) in enumerate(minibatch_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert len(head) == expected_batch_size
        assert len(tail) == expected_batch_size
        assert negs.dim() == 2
        assert negs.shape[0] == expected_batch_size
        assert negs.shape[1] == num_negs
        # Verify head/tail and negatie tails match.
        assert torch.equal(head + num_ids, tail)
        assert torch.equal(head + 1, negs[:, 0])
        assert torch.equal(head + 2, negs[:, 1])
        # Archive batch.
        head_ids.append(head)
        tail_ids.append(tail)
        negs_ids.append(negs)
    head_ids = torch.cat(head_ids)
    tail_ids = torch.cat(tail_ids)
    negs_ids = torch.cat(negs_ids)
    assert torch.all(head_ids[:-1] <= head_ids[1:]) is not shuffle
    assert torch.all(tail_ids[:-1] <= tail_ids[1:]) is not shuffle
    assert torch.all(negs_ids[:-1, 0] <= negs_ids[1:, 0]) is not shuffle
    assert torch.all(negs_ids[:-1, 1] <= negs_ids[1:, 1]) is not shuffle


def test_append_with_other_datapipes():
    num_ids = 100
    batch_size = 4
    item_set = gb.ItemSet(torch.arange(0, num_ids))
    data_pipe = gb.MinibatchSampler(item_set, batch_size)
    # torchdata.datapipes.iter.Enumerator
    data_pipe = data_pipe.enumerate()
    for i, (idx, data) in enumerate(data_pipe):
        assert i == idx
        assert len(data) == batch_size
213
214
215
216
217


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
218
def test_ItemSetDict_node_ids(batch_size, shuffle, drop_last):
219
220
221
222
223
224
225
226
227
    # Node IDs.
    num_ids = 205
    ids = {
        "user": gb.ItemSet(torch.arange(0, 99)),
        "item": gb.ItemSet(torch.arange(99, num_ids)),
    }
    chained_ids = []
    for key, value in ids.items():
        chained_ids += [(key, v) for v in value]
228
    item_set = gb.ItemSetDict(ids)
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    minibatch_sampler = gb.MinibatchSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    minibatch_ids = []
    for i, batch in enumerate(minibatch_sampler):
        is_last = (i + 1) * batch_size >= num_ids
        if not is_last or num_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = num_ids % batch_size
            else:
                assert False
        assert isinstance(batch, dict)
        ids = []
        for _, v in batch.items():
            ids.append(v)
        ids = torch.cat(ids)
        assert len(ids) == expected_batch_size
        minibatch_ids.append(ids)
    minibatch_ids = torch.cat(minibatch_ids)
    assert torch.all(minibatch_ids[:-1] <= minibatch_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
256
def test_ItemSetDict_node_pairs(batch_size, shuffle, drop_last):
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    # Node pairs.
    num_ids = 103
    total_ids = 2 * num_ids
    node_pairs_0 = (
        torch.arange(0, num_ids),
        torch.arange(num_ids, num_ids * 2),
    )
    node_pairs_1 = (
        torch.arange(num_ids * 2, num_ids * 3),
        torch.arange(num_ids * 3, num_ids * 4),
    )
    node_pairs_dict = {
        ("user", "like", "item"): gb.ItemSet(node_pairs_0),
        ("user", "follow", "user"): gb.ItemSet(node_pairs_1),
    }
272
    item_set = gb.ItemSetDict(node_pairs_dict)
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    minibatch_sampler = gb.MinibatchSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    for i, batch in enumerate(minibatch_sampler):
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        src = []
        dst = []
        for _, (v_src, v_dst) in batch.items():
            src.append(v_src)
            dst.append(v_dst)
        src = torch.cat(src)
        dst = torch.cat(dst)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
        assert torch.equal(src + num_ids, dst)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
308
def test_ItemSetDict_node_pairs_labels(batch_size, shuffle, drop_last):
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    # Node pairs and labels
    num_ids = 103
    total_ids = 2 * num_ids
    node_pairs_0 = (
        torch.arange(0, num_ids),
        torch.arange(num_ids, num_ids * 2),
    )
    node_pairs_1 = (
        torch.arange(num_ids * 2, num_ids * 3),
        torch.arange(num_ids * 3, num_ids * 4),
    )
    labels = torch.arange(0, num_ids)
    node_pairs_dict = {
        ("user", "like", "item"): gb.ItemSet(
            (node_pairs_0[0], node_pairs_0[1], labels)
        ),
        ("user", "follow", "user"): gb.ItemSet(
            (node_pairs_1[0], node_pairs_1[1], labels + num_ids * 2)
        ),
    }
329
    item_set = gb.ItemSetDict(node_pairs_dict)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    minibatch_sampler = gb.MinibatchSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    src_ids = []
    dst_ids = []
    labels = []
    for i, batch in enumerate(minibatch_sampler):
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        src = []
        dst = []
        label = []
        for _, (v_src, v_dst, v_label) in batch.items():
            src.append(v_src)
            dst.append(v_dst)
            label.append(v_label)
        src = torch.cat(src)
        dst = torch.cat(dst)
        label = torch.cat(label)
        assert len(src) == expected_batch_size
        assert len(dst) == expected_batch_size
        assert len(label) == expected_batch_size
        src_ids.append(src)
        dst_ids.append(dst)
        labels.append(label)
        assert torch.equal(src + num_ids, dst)
        assert torch.equal(src, label)
    src_ids = torch.cat(src_ids)
    dst_ids = torch.cat(dst_ids)
    labels = torch.cat(labels)
    assert torch.all(src_ids[:-1] <= src_ids[1:]) is not shuffle
    assert torch.all(dst_ids[:-1] <= dst_ids[1:]) is not shuffle
    assert torch.all(labels[:-1] <= labels[1:]) is not shuffle


@pytest.mark.parametrize("batch_size", [1, 4])
@pytest.mark.parametrize("shuffle", [True, False])
@pytest.mark.parametrize("drop_last", [True, False])
374
def test_ItemSetDict_head_tail_neg_tails(batch_size, shuffle, drop_last):
375
376
377
378
379
380
381
382
383
384
385
    # Head, tail and negative tails.
    num_ids = 103
    total_ids = 2 * num_ids
    num_negs = 2
    heads = torch.arange(0, num_ids)
    tails = torch.arange(num_ids, num_ids * 2)
    neg_tails = torch.stack((heads + 1, heads + 2), dim=-1)
    data_dict = {
        ("user", "like", "item"): gb.ItemSet((heads, tails, neg_tails)),
        ("user", "follow", "user"): gb.ItemSet((heads, tails, neg_tails)),
    }
386
    item_set = gb.ItemSetDict(data_dict)
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    minibatch_sampler = gb.MinibatchSampler(
        item_set, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
    )
    head_ids = []
    tail_ids = []
    negs_ids = []
    for i, batch in enumerate(minibatch_sampler):
        is_last = (i + 1) * batch_size >= total_ids
        if not is_last or total_ids % batch_size == 0:
            expected_batch_size = batch_size
        else:
            if not drop_last:
                expected_batch_size = total_ids % batch_size
            else:
                assert False
        head = []
        tail = []
        negs = []
        for _, (v_head, v_tail, v_negs) in batch.items():
            head.append(v_head)
            tail.append(v_tail)
            negs.append(v_negs)
        head = torch.cat(head)
        tail = torch.cat(tail)
        negs = torch.cat(negs)
        assert len(head) == expected_batch_size
        assert len(tail) == expected_batch_size
        assert len(negs) == expected_batch_size
        head_ids.append(head)
        tail_ids.append(tail)
        negs_ids.append(negs)
        assert negs.dim() == 2
        assert negs.shape[0] == expected_batch_size
        assert negs.shape[1] == num_negs
        assert torch.equal(head + num_ids, tail)
        assert torch.equal(head + 1, negs[:, 0])
        assert torch.equal(head + 2, negs[:, 1])
    head_ids = torch.cat(head_ids)
    tail_ids = torch.cat(tail_ids)
    negs_ids = torch.cat(negs_ids)
    assert torch.all(head_ids[:-1] <= head_ids[1:]) is not shuffle
    assert torch.all(tail_ids[:-1] <= tail_ids[1:]) is not shuffle
    assert torch.all(negs_ids[:-1] <= negs_ids[1:]) is not shuffle