train.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""Training script"""
import os, time
import argparse
import logging
import random
import string
import numpy as np
import mxnet as mx
from mxnet import gluon
from data import MovieLens
from model import GCMCLayer, BiDecoder
from utils import get_activation, parse_ctx, gluon_net_info, gluon_total_param_num, \
                  params_clip_global_norm, MetricLogger
from mxnet.gluon import Block

class Net(Block):
    def __init__(self, args, **kwargs):
        super(Net, self).__init__(**kwargs)
        self._act = get_activation(args.model_activation)
        with self.name_scope():
            self.encoder = GCMCLayer(args.rating_vals,
                                     args.src_in_units,
                                     args.dst_in_units,
                                     args.gcn_agg_units,
                                     args.gcn_out_units,
                                     args.gcn_dropout,
                                     args.gcn_agg_accum,
                                     agg_act=self._act,
                                     share_user_item_param=args.share_param)
            self.decoder = BiDecoder(args.rating_vals,
                                     in_units=args.gcn_out_units,
                                     num_basis_functions=args.gen_r_num_basis_func)

    def forward(self, enc_graph, dec_graph, ufeat, ifeat):
        user_out, movie_out = self.encoder(
            enc_graph,
            ufeat,
            ifeat)
        pred_ratings = self.decoder(dec_graph, user_out, movie_out)
        return pred_ratings

def evaluate(args, net, dataset, segment='valid'):
    possible_rating_values = dataset.possible_rating_values
    nd_possible_rating_values = mx.nd.array(possible_rating_values, ctx=args.ctx, dtype=np.float32)

    if segment == "valid":
        rating_values = dataset.valid_truths
        enc_graph = dataset.valid_enc_graph
        dec_graph = dataset.valid_dec_graph
    elif segment == "test":
        rating_values = dataset.test_truths
        enc_graph = dataset.test_enc_graph
        dec_graph = dataset.test_dec_graph
    else:
        raise NotImplementedError

    # Evaluate RMSE
    with mx.autograd.predict_mode():
        pred_ratings = net(enc_graph, dec_graph,
                           dataset.user_feature, dataset.movie_feature)
    real_pred_ratings = (mx.nd.softmax(pred_ratings, axis=1) *
                         nd_possible_rating_values.reshape((1, -1))).sum(axis=1)
    rmse = mx.nd.square(real_pred_ratings - rating_values).mean().asscalar()
    rmse = np.sqrt(rmse)
    return rmse

def train(args):
    print(args)
    dataset = MovieLens(args.data_name, args.ctx, use_one_hot_fea=args.use_one_hot_fea, symm=args.gcn_agg_norm_symm,
                        test_ratio=args.data_test_ratio, valid_ratio=args.data_valid_ratio)
    print("Loading data finished ...\n")

    args.src_in_units = dataset.user_feature_shape[1]
    args.dst_in_units = dataset.movie_feature_shape[1]
    args.rating_vals = dataset.possible_rating_values

    ### build the net
    net = Net(args=args)
    net.initialize(init=mx.init.Xavier(factor_type='in'), ctx=args.ctx)
    net.hybridize()
    nd_possible_rating_values = mx.nd.array(dataset.possible_rating_values, ctx=args.ctx, dtype=np.float32)
    rating_loss_net = gluon.loss.SoftmaxCELoss()
    rating_loss_net.hybridize()
    trainer = gluon.Trainer(net.collect_params(), args.train_optimizer, {'learning_rate': args.train_lr})
    print("Loading network finished ...\n")

    ### perpare training data
    train_gt_labels = dataset.train_labels
    train_gt_ratings = dataset.train_truths

    ### prepare the logger
    train_loss_logger = MetricLogger(['iter', 'loss', 'rmse'], ['%d', '%.4f', '%.4f'],
                                     os.path.join(args.save_dir, 'train_loss%d.csv' % args.save_id))
    valid_loss_logger = MetricLogger(['iter', 'rmse'], ['%d', '%.4f'],
                                     os.path.join(args.save_dir, 'valid_loss%d.csv' % args.save_id))
    test_loss_logger = MetricLogger(['iter', 'rmse'], ['%d', '%.4f'],
                                    os.path.join(args.save_dir, 'test_loss%d.csv' % args.save_id))

    ### declare the loss information
    best_valid_rmse = np.inf
    no_better_valid = 0
    best_iter = -1
    avg_gnorm = 0
    count_rmse = 0
    count_num = 0
    count_loss = 0

108
109
110
111
112
113
114
    dataset.train_enc_graph = dataset.train_enc_graph.to(args.ctx)
    dataset.train_dec_graph = dataset.train_dec_graph.to(args.ctx)
    dataset.valid_enc_graph = dataset.train_enc_graph
    dataset.valid_dec_graph = dataset.valid_dec_graph.to(args.ctx)
    dataset.test_enc_graph = dataset.test_enc_graph.to(args.ctx)
    dataset.test_dec_graph = dataset.test_dec_graph.to(args.ctx)

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    print("Start training ...")
    dur = []
    for iter_idx in range(1, args.train_max_iter):
        if iter_idx > 3:
            t0 = time.time()
        with mx.autograd.record():
            pred_ratings = net(dataset.train_enc_graph, dataset.train_dec_graph,
                               dataset.user_feature, dataset.movie_feature)
            loss = rating_loss_net(pred_ratings, train_gt_labels).mean()
            loss.backward()

        count_loss += loss.asscalar()
        gnorm = params_clip_global_norm(net.collect_params(), args.train_grad_clip, args.ctx)
        avg_gnorm += gnorm
        trainer.step(1.0)
        if iter_idx > 3:
            dur.append(time.time() - t0)

        if iter_idx == 1:
            print("Total #Param of net: %d" % (gluon_total_param_num(net)))
            print(gluon_net_info(net, save_path=os.path.join(args.save_dir, 'net%d.txt' % args.save_id)))

        real_pred_ratings = (mx.nd.softmax(pred_ratings, axis=1) *
                             nd_possible_rating_values.reshape((1, -1))).sum(axis=1)
        rmse = mx.nd.square(real_pred_ratings - train_gt_ratings).sum()
        count_rmse += rmse.asscalar()
        count_num += pred_ratings.shape[0]

        if iter_idx % args.train_log_interval == 0:
            train_loss_logger.log(iter=iter_idx,
                                  loss=count_loss/(iter_idx+1), rmse=count_rmse/count_num)
            logging_str = "Iter={}, gnorm={:.3f}, loss={:.4f}, rmse={:.4f}, time={:.4f}".format(
                iter_idx, avg_gnorm/args.train_log_interval,
                count_loss/iter_idx, count_rmse/count_num,
                np.average(dur))
            avg_gnorm = 0
            count_rmse = 0
            count_num = 0

        if iter_idx % args.train_valid_interval == 0:
            valid_rmse = evaluate(args=args, net=net, dataset=dataset, segment='valid')
            valid_loss_logger.log(iter = iter_idx, rmse = valid_rmse)
            logging_str += ',\tVal RMSE={:.4f}'.format(valid_rmse)

            if valid_rmse < best_valid_rmse:
                best_valid_rmse = valid_rmse
                no_better_valid = 0
                best_iter = iter_idx
                #net.save_parameters(filename=os.path.join(args.save_dir, 'best_valid_net{}.params'.format(args.save_id)))
                test_rmse = evaluate(args=args, net=net, dataset=dataset, segment='test')
                best_test_rmse = test_rmse
                test_loss_logger.log(iter=iter_idx, rmse=test_rmse)
                logging_str += ', Test RMSE={:.4f}'.format(test_rmse)
            else:
                no_better_valid += 1
                if no_better_valid > args.train_early_stopping_patience\
                    and trainer.learning_rate <= args.train_min_lr:
                    logging.info("Early stopping threshold reached. Stop training.")
                    break
                if no_better_valid > args.train_decay_patience:
                    new_lr = max(trainer.learning_rate * args.train_lr_decay_factor, args.train_min_lr)
                    if new_lr < trainer.learning_rate:
                        logging.info("\tChange the LR to %g" % new_lr)
                        trainer.set_learning_rate(new_lr)
                        no_better_valid = 0
        if iter_idx  % args.train_log_interval == 0:
            print(logging_str)
    print('Best Iter Idx={}, Best Valid RMSE={:.4f}, Best Test RMSE={:.4f}'.format(
        best_iter, best_valid_rmse, best_test_rmse))
    train_loss_logger.close()
    valid_loss_logger.close()
    test_loss_logger.close()


def config():
    parser = argparse.ArgumentParser(description='Run the baseline method.')

    parser.add_argument('--seed', default=123, type=int)
    parser.add_argument('--ctx', dest='ctx', default='gpu0', type=str,
                        help='Running Context. E.g `--ctx gpu` or `--ctx gpu0,gpu1` or `--ctx cpu`')
    parser.add_argument('--save_dir', type=str, help='The saving directory')
    parser.add_argument('--save_id', type=int, help='The saving log id')
    parser.add_argument('--silent', action='store_true')

    parser.add_argument('--data_name', default='ml-1m', type=str,
                        help='The dataset name: ml-100k, ml-1m, ml-10m')
    parser.add_argument('--data_test_ratio', type=float, default=0.1) ## for ml-100k the test ration is 0.2
    parser.add_argument('--data_valid_ratio', type=float, default=0.1)
    parser.add_argument('--use_one_hot_fea', action='store_true', default=False)

    #parser.add_argument('--model_remove_rating', type=bool, default=False)
    parser.add_argument('--model_activation', type=str, default="leaky")

    parser.add_argument('--gcn_dropout', type=float, default=0.7)
    parser.add_argument('--gcn_agg_norm_symm', type=bool, default=True)
    parser.add_argument('--gcn_agg_units', type=int, default=500)
    parser.add_argument('--gcn_agg_accum', type=str, default="sum")
    parser.add_argument('--gcn_out_units', type=int, default=75)

    parser.add_argument('--gen_r_num_basis_func', type=int, default=2)

    # parser.add_argument('--train_rating_batch_size', type=int, default=10000)
    parser.add_argument('--train_max_iter', type=int, default=2000)
    parser.add_argument('--train_log_interval', type=int, default=1)
    parser.add_argument('--train_valid_interval', type=int, default=1)
    parser.add_argument('--train_optimizer', type=str, default="adam")
    parser.add_argument('--train_grad_clip', type=float, default=1.0)
    parser.add_argument('--train_lr', type=float, default=0.01)
    parser.add_argument('--train_min_lr', type=float, default=0.001)
    parser.add_argument('--train_lr_decay_factor', type=float, default=0.5)
    parser.add_argument('--train_decay_patience', type=int, default=50)
    parser.add_argument('--train_early_stopping_patience', type=int, default=100)
    parser.add_argument('--share_param', default=False, action='store_true')

    args = parser.parse_args()
    args.ctx = parse_ctx(args.ctx)[0]


    ### configure save_fir to save all the info
    if args.save_dir is None:
        args.save_dir = args.data_name+"_" + ''.join(random.choices(string.ascii_uppercase + string.digits, k=2))
    if args.save_id is None:
        args.save_id = np.random.randint(20)
    args.save_dir = os.path.join("log", args.save_dir)
    if not os.path.isdir(args.save_dir):
        os.makedirs(args.save_dir)

    return args


if __name__ == '__main__':
    args = config()
    np.random.seed(args.seed)
    mx.random.seed(args.seed, args.ctx)
    train(args)