"vscode:/vscode.git/clone" did not exist on "8c78273be11f05b8b77ba24f0764829b7b404b7b"
appnp.py 5.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse, time
import numpy as np
import dgl
import mxnet as mx
from mxnet import nd, gluon
from mxnet.gluon import nn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.nn.mxnet.conv import APPNPConv

class APPNP(nn.Block):
    def __init__(self,
                 g,
                 in_feats,
                 hiddens,
                 n_classes,
                 activation,
                 feat_drop,
                 edge_drop,
                 alpha,
                 k):
        super(APPNP, self).__init__()
        self.g = g

        with self.name_scope():
            self.layers = nn.Sequential()
            # input layer
            self.layers.add(nn.Dense(hiddens[0], in_units=in_feats))
            # hidden layers
            for i in range(1, len(hiddens)):
                self.layers.add(nn.Dense(hiddens[i], in_units=hiddens[i - 1]))
            # output layer
            self.layers.add(nn.Dense(n_classes, in_units=hiddens[-1]))
            self.activation = activation
            if feat_drop:
                self.feat_drop = nn.Dropout(feat_drop)
            else:
                self.feat_drop = lambda x: x
            self.propagate = APPNPConv(k, alpha, edge_drop)

    def forward(self, features):
        # prediction step
        h = features
        h = self.feat_drop(h)
        h = self.activation(self.layers[0](h))
        for layer in self.layers[1:-1]:
            h = self.activation(layer(h))
        h = self.layers[-1](self.feat_drop(h))
        # propagation step
        h = self.propagate(self.g, h)
        return h

def evaluate(model, features, labels, mask):
    pred = model(features).argmax(axis=1)
    accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
    return accuracy.asscalar()

def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = nd.array(data.features)
    labels = nd.array(data.labels)
    train_mask = nd.array(data.train_mask)
    val_mask = nd.array(data.val_mask)
    test_mask = nd.array(data.test_mask)

    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
           train_mask.sum().asscalar(),
           val_mask.sum().asscalar(),
           test_mask.sum().asscalar()))

    if args.gpu < 0:
        ctx = mx.cpu()
    else:
        ctx = mx.gpu(args.gpu)

    features = features.as_in_context(ctx)
    labels = labels.as_in_context(ctx)
    train_mask = train_mask.as_in_context(ctx)
    val_mask = val_mask.as_in_context(ctx)
    test_mask = test_mask.as_in_context(ctx)

    # graph preprocess and calculate normalization factor
    g = DGLGraph(data.graph)
    n_edges = g.number_of_edges()
    # add self loop
    g.add_edges(g.nodes(), g.nodes())
    g.set_n_initializer(dgl.init.zero_initializer)
    g.set_e_initializer(dgl.init.zero_initializer)

    # create APPNP model
    model = APPNP(g,
                  in_feats,
                  args.hidden_sizes,
                  n_classes,
                  nd.relu,
                  args.in_drop,
                  args.edge_drop,
                  args.alpha,
                  args.k)

    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    # use optimizer
    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam',
            {'learning_rate': args.lr, 'wd': args.weight_decay})

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            loss.asscalar()
            dur.append(time.time() - t0)
            acc = evaluate(model, features, labels, val_mask)
            print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                  "ETputs(KTEPS) {:.2f}". format(
                epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000))

    # test set accuracy
    acc = evaluate(model, features, labels, test_mask)
    print("Test accuracy {:.2%}".format(acc))

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='APPNP')
    register_data_args(parser)
    parser.add_argument("--in-drop", type=float, default=0.5,
                        help="input feature dropout")
    parser.add_argument("--edge-drop", type=float, default=0.5,
                        help="edge propagation dropout")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--hidden_sizes", type=int, nargs='+', default=[64],
                        help="hidden unit sizes for appnp")
    parser.add_argument("--k", type=int, default=10,
                        help="Number of propagation steps")
    parser.add_argument("--alpha", type=float, default=0.1,
                        help="Teleport Probability")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
    args = parser.parse_args()
    print(args)

    main(args)