train.py 21.7 KB
Newer Older
1
2
3
4
5
6
7
8
from dataloader import EvalDataset, TrainDataset, NewBidirectionalOneShotIterator
from dataloader import get_dataset

import argparse
import os
import logging
import time

Da Zheng's avatar
Da Zheng committed
9
backend = os.environ.get('DGLBACKEND', 'pytorch')
10
if backend.lower() == 'mxnet':
11
    import multiprocessing as mp
12
13
14
15
    from train_mxnet import load_model
    from train_mxnet import train
    from train_mxnet import test
else:
16
    import torch.multiprocessing as mp
17
    from train_pytorch import load_model
18
19
    from train_pytorch import train, train_mp
    from train_pytorch import test, test_mp
20
21
22
23
24
25

class ArgParser(argparse.ArgumentParser):
    def __init__(self):
        super(ArgParser, self).__init__()

        self.add_argument('--model_name', default='TransE',
26
27
                          choices=['TransE', 'TransE_l1', 'TransE_l2', 'TransR',
                                   'RESCAL', 'DistMult', 'ComplEx', 'RotatE'],
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
                          help='model to use')
        self.add_argument('--data_path', type=str, default='data',
                          help='root path of all dataset')
        self.add_argument('--dataset', type=str, default='FB15k',
                          help='dataset name, under data_path')
        self.add_argument('--format', type=str, default='1',
                          help='the format of the dataset.')
        self.add_argument('--save_path', type=str, default='ckpts',
                          help='place to save models and logs')
        self.add_argument('--save_emb', type=str, default=None,
                          help='save the embeddings in the specific location.')

        self.add_argument('--max_step', type=int, default=80000,
                          help='train xx steps')
        self.add_argument('--warm_up_step', type=int, default=None,
                          help='for learning rate decay')
        self.add_argument('--batch_size', type=int, default=1024,
                          help='batch size')
        self.add_argument('--batch_size_eval', type=int, default=8,
                          help='batch size used for eval and test')
        self.add_argument('--neg_sample_size', type=int, default=128,
                          help='negative sampling size')
50
51
52
53
54
55
        self.add_argument('--neg_chunk_size', type=int, default=-1,
                          help='chunk size of the negative edges.')
        self.add_argument('--neg_deg_sample', action='store_true',
                          help='negative sample proportional to vertex degree in the training')
        self.add_argument('--neg_deg_sample_eval', action='store_true',
                          help='negative sampling proportional to vertex degree in the evaluation')
56
57
        self.add_argument('--neg_sample_size_valid', type=int, default=1000,
                          help='negative sampling size for validation')
58
59
        self.add_argument('--neg_chunk_size_valid', type=int, default=-1,
                          help='chunk size of the negative edges.')
60
61
        self.add_argument('--neg_sample_size_test', type=int, default=-1,
                          help='negative sampling size for testing')
62
63
        self.add_argument('--neg_chunk_size_test', type=int, default=-1,
                          help='chunk size of the negative edges.')
64
65
66
67
68
69
70
71
        self.add_argument('--hidden_dim', type=int, default=256,
                          help='hidden dim used by relation and entity')
        self.add_argument('--lr', type=float, default=0.0001,
                          help='learning rate')
        self.add_argument('-g', '--gamma', type=float, default=12.0,
                          help='margin value')
        self.add_argument('--eval_percent', type=float, default=1,
                          help='sample some percentage for evaluation.')
72
73
        self.add_argument('--no_eval_filter', action='store_true',
                          help='do not filter positive edges among negative edges for evaluation')
74

75
76
        self.add_argument('--gpu', type=int, default=[-1], nargs='+', 
                          help='a list of active gpu ids, e.g. 0 1 2 4')
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        self.add_argument('--mix_cpu_gpu', action='store_true',
                          help='mix CPU and GPU training')
        self.add_argument('-de', '--double_ent', action='store_true',
                          help='double entitiy dim for complex number')
        self.add_argument('-dr', '--double_rel', action='store_true',
                          help='double relation dim for complex number')
        self.add_argument('--seed', type=int, default=0,
                          help='set random seed fro reproducibility')
        self.add_argument('-log', '--log_interval', type=int, default=1000,
                          help='do evaluation after every x steps')
        self.add_argument('--eval_interval', type=int, default=10000,
                          help='do evaluation after every x steps')
        self.add_argument('-adv', '--neg_adversarial_sampling', action='store_true',
                          help='if use negative adversarial sampling')
        self.add_argument('-a', '--adversarial_temperature', default=1.0, type=float)

        self.add_argument('--valid', action='store_true',
                          help='if valid a model')
        self.add_argument('--test', action='store_true',
                          help='if test a model')
        self.add_argument('-rc', '--regularization_coef', type=float, default=0.000002,
                          help='set value > 0.0 if regularization is used')
        self.add_argument('-rn', '--regularization_norm', type=int, default=3,
                          help='norm used in regularization')
101
        self.add_argument('--num_worker', type=int, default=32,
102
103
104
105
106
107
108
109
110
111
112
113
114
                          help='number of workers used for loading data')
        self.add_argument('--non_uni_weight', action='store_true',
                          help='if use uniform weight when computing loss')
        self.add_argument('--init_step', type=int, default=0,
                          help='DONT SET MANUALLY, used for resume')
        self.add_argument('--step', type=int, default=0,
                          help='DONT SET MANUALLY, track current step')
        self.add_argument('--pickle_graph', action='store_true',
                          help='pickle built graph, building a huge graph is slow.')
        self.add_argument('--num_proc', type=int, default=1,
                          help='number of process used')
        self.add_argument('--rel_part', action='store_true',
                          help='enable relation partitioning')
115
116
        self.add_argument('--soft_rel_part', action='store_true',
                          help='enable soft relation partition')
117
118
119
120
121
122
        self.add_argument('--nomp_thread_per_process', type=int, default=-1,
                          help='num of omp threads used per process in multi-process training')
        self.add_argument('--async_update', action='store_true',
                          help='allow async_update on node embedding')
        self.add_argument('--force_sync_interval', type=int, default=-1,
                          help='We force a synchronization between processes every x steps')
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157


def get_logger(args):
    if not os.path.exists(args.save_path):
        os.mkdir(args.save_path)

    folder = '{}_{}_'.format(args.model_name, args.dataset)
    n = len([x for x in os.listdir(args.save_path) if x.startswith(folder)])
    folder += str(n)
    args.save_path = os.path.join(args.save_path, folder)

    if not os.path.exists(args.save_path):
        os.makedirs(args.save_path)
    log_file = os.path.join(args.save_path, 'train.log')

    logging.basicConfig(
        format='%(asctime)s %(levelname)-8s %(message)s',
        level=logging.INFO,
        datefmt='%Y-%m-%d %H:%M:%S',
        filename=log_file,
        filemode='w'
    )

    logger = logging.getLogger(__name__)
    print("Logs are being recorded at: {}".format(log_file))
    return logger


def run(args, logger):
    # load dataset and samplers
    dataset = get_dataset(args.data_path, args.dataset, args.format)
    n_entities = dataset.n_entities
    n_relations = dataset.n_relations
    if args.neg_sample_size_test < 0:
        args.neg_sample_size_test = n_entities
158
    args.eval_filter = not args.no_eval_filter
159
160
161
162
163
164
165
166
167
168
169
170
171
    if args.neg_deg_sample_eval:
        assert not args.eval_filter, "if negative sampling based on degree, we can't filter positive edges."

    # When we generate a batch of negative edges from a set of positive edges,
    # we first divide the positive edges into chunks and corrupt the edges in a chunk
    # together. By default, the chunk size is equal to the negative sample size.
    # Usually, this works well. But we also allow users to specify the chunk size themselves.
    if args.neg_chunk_size < 0:
        args.neg_chunk_size = args.neg_sample_size
    if args.neg_chunk_size_valid < 0:
        args.neg_chunk_size_valid = args.neg_sample_size_valid
    if args.neg_chunk_size_test < 0:
        args.neg_chunk_size_test = args.neg_sample_size_test
172

173
    num_workers = args.num_worker
174
    train_data = TrainDataset(dataset, args, ranks=args.num_proc)
175
    # if there is no cross partition relaiton, we fall back to strict_rel_part
176
    args.strict_rel_part = args.mix_cpu_gpu and (train_data.cross_part == False)
177
    args.soft_rel_part = args.mix_cpu_gpu and args.soft_rel_part and train_data.cross_part
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    # Automatically set number of OMP threads for each process if it is not provided
    # The value for GPU is evaluated in AWS p3.16xlarge
    # The value for CPU is evaluated in AWS x1.32xlarge
    if args.nomp_thread_per_process == -1:
        if len(args.gpu) > 0:
            # GPU training
            args.num_thread = 4
        else:
            # CPU training
            args.num_thread = mp.cpu_count() // args.num_proc + 1
    else:
        args.num_thread = args.nomp_thread_per_process

192
193
194
    if args.num_proc > 1:
        train_samplers = []
        for i in range(args.num_proc):
195
196
            train_sampler_head = train_data.create_sampler(args.batch_size,
                                                           args.neg_sample_size,
197
                                                           args.neg_chunk_size,
198
199
                                                           mode='head',
                                                           num_workers=num_workers,
200
                                                           shuffle=True,
201
                                                           exclude_positive=False,
202
                                                           rank=i)
203
204
            train_sampler_tail = train_data.create_sampler(args.batch_size,
                                                           args.neg_sample_size,
205
                                                           args.neg_chunk_size,
206
207
                                                           mode='tail',
                                                           num_workers=num_workers,
208
                                                           shuffle=True,
209
                                                           exclude_positive=False,
210
211
                                                           rank=i)
            train_samplers.append(NewBidirectionalOneShotIterator(train_sampler_head, train_sampler_tail,
212
                                                                  args.neg_chunk_size, args.neg_sample_size,
213
214
                                                                  True, n_entities))
    else:
215
216
        train_sampler_head = train_data.create_sampler(args.batch_size,
                                                       args.neg_sample_size,
217
                                                       args.neg_chunk_size,
218
219
                                                       mode='head',
                                                       num_workers=num_workers,
220
                                                       shuffle=True,
221
222
223
                                                       exclude_positive=False)
        train_sampler_tail = train_data.create_sampler(args.batch_size,
                                                       args.neg_sample_size,
224
                                                       args.neg_chunk_size,
225
226
                                                       mode='tail',
                                                       num_workers=num_workers,
227
                                                       shuffle=True,
228
                                                       exclude_positive=False)
229
        train_sampler = NewBidirectionalOneShotIterator(train_sampler_head, train_sampler_tail,
230
                                                        args.neg_chunk_size, args.neg_sample_size,
231
232
                                                        True, n_entities)

Da Zheng's avatar
Da Zheng committed
233
234
235
236
    # for multiprocessing evaluation, we don't need to sample multiple batches at a time
    # in each process.
    if args.num_proc > 1:
        num_workers = 1
237
    if args.valid or args.test:
238
        args.num_test_proc = args.num_proc if args.num_proc < len(args.gpu) else len(args.gpu)
239
240
241
242
243
244
245
246
247
248
        eval_dataset = EvalDataset(dataset, args)
    if args.valid:
        # Here we want to use the regualr negative sampler because we need to ensure that
        # all positive edges are excluded.
        if args.num_proc > 1:
            valid_sampler_heads = []
            valid_sampler_tails = []
            for i in range(args.num_proc):
                valid_sampler_head = eval_dataset.create_sampler('valid', args.batch_size_eval,
                                                                 args.neg_sample_size_valid,
249
                                                                 args.neg_chunk_size_valid,
250
                                                                 args.eval_filter,
251
                                                                 mode='chunk-head',
Da Zheng's avatar
Da Zheng committed
252
                                                                 num_workers=num_workers,
253
254
255
                                                                 rank=i, ranks=args.num_proc)
                valid_sampler_tail = eval_dataset.create_sampler('valid', args.batch_size_eval,
                                                                 args.neg_sample_size_valid,
256
                                                                 args.neg_chunk_size_valid,
257
                                                                 args.eval_filter,
258
                                                                 mode='chunk-tail',
Da Zheng's avatar
Da Zheng committed
259
                                                                 num_workers=num_workers,
260
261
262
263
264
265
                                                                 rank=i, ranks=args.num_proc)
                valid_sampler_heads.append(valid_sampler_head)
                valid_sampler_tails.append(valid_sampler_tail)
        else:
            valid_sampler_head = eval_dataset.create_sampler('valid', args.batch_size_eval,
                                                             args.neg_sample_size_valid,
266
                                                             args.neg_chunk_size_valid,
267
                                                             args.eval_filter,
268
                                                             mode='chunk-head',
Da Zheng's avatar
Da Zheng committed
269
                                                             num_workers=num_workers,
270
271
272
                                                             rank=0, ranks=1)
            valid_sampler_tail = eval_dataset.create_sampler('valid', args.batch_size_eval,
                                                             args.neg_sample_size_valid,
273
                                                             args.neg_chunk_size_valid,
274
                                                             args.eval_filter,
275
                                                             mode='chunk-tail',
Da Zheng's avatar
Da Zheng committed
276
                                                             num_workers=num_workers,
277
278
279
280
                                                             rank=0, ranks=1)
    if args.test:
        # Here we want to use the regualr negative sampler because we need to ensure that
        # all positive edges are excluded.
281
282
        # We use a maximum of num_gpu in test stage to save GPU memory.
        if args.num_test_proc > 1:
283
284
            test_sampler_tails = []
            test_sampler_heads = []
285
            for i in range(args.num_test_proc):
286
287
                test_sampler_head = eval_dataset.create_sampler('test', args.batch_size_eval,
                                                                args.neg_sample_size_test,
288
                                                                args.neg_chunk_size_test,
289
                                                                args.eval_filter,
290
                                                                mode='chunk-head',
Da Zheng's avatar
Da Zheng committed
291
                                                                num_workers=num_workers,
292
                                                                rank=i, ranks=args.num_test_proc)
293
294
                test_sampler_tail = eval_dataset.create_sampler('test', args.batch_size_eval,
                                                                args.neg_sample_size_test,
295
                                                                args.neg_chunk_size_test,
296
                                                                args.eval_filter,
297
                                                                mode='chunk-tail',
Da Zheng's avatar
Da Zheng committed
298
                                                                num_workers=num_workers,
299
                                                                rank=i, ranks=args.num_test_proc)
300
301
302
303
304
                test_sampler_heads.append(test_sampler_head)
                test_sampler_tails.append(test_sampler_tail)
        else:
            test_sampler_head = eval_dataset.create_sampler('test', args.batch_size_eval,
                                                            args.neg_sample_size_test,
305
                                                            args.neg_chunk_size_test,
306
                                                            args.eval_filter,
307
                                                            mode='chunk-head',
Da Zheng's avatar
Da Zheng committed
308
                                                            num_workers=num_workers,
309
310
311
                                                            rank=0, ranks=1)
            test_sampler_tail = eval_dataset.create_sampler('test', args.batch_size_eval,
                                                            args.neg_sample_size_test,
312
                                                            args.neg_chunk_size_test,
313
                                                            args.eval_filter,
314
                                                            mode='chunk-tail',
Da Zheng's avatar
Da Zheng committed
315
                                                            num_workers=num_workers,
316
317
318
319
320
321
322
323
                                                            rank=0, ranks=1)

    # We need to free all memory referenced by dataset.
    eval_dataset = None
    dataset = None
    # load model
    model = load_model(logger, args, n_entities, n_relations)

324
    if args.num_proc > 1 or args.async_update:
325
326
327
328
        model.share_memory()

    # train
    start = time.time()
329
330
    rel_parts = train_data.rel_parts if args.strict_rel_part or args.soft_rel_part else None
    cross_rels = train_data.cross_rels if args.soft_rel_part else None
331
332
    if args.num_proc > 1:
        procs = []
333
        barrier = mp.Barrier(args.num_proc)
334
        for i in range(args.num_proc):
335
336
337
338
339
340
341
            valid_sampler = [valid_sampler_heads[i], valid_sampler_tails[i]] if args.valid else None
            proc = mp.Process(target=train_mp, args=(args,
                                                     model,
                                                     train_samplers[i],
                                                     valid_sampler,
                                                     i,
                                                     rel_parts,
342
                                                     cross_rels,
343
                                                     barrier))
344
345
346
347
348
349
            procs.append(proc)
            proc.start()
        for proc in procs:
            proc.join()
    else:
        valid_samplers = [valid_sampler_head, valid_sampler_tail] if args.valid else None
350
        train(args, model, train_sampler, valid_samplers, rel_parts=rel_parts)
351
352
353
354
355
356
357
358
359
    print('training takes {} seconds'.format(time.time() - start))

    if args.save_emb is not None:
        if not os.path.exists(args.save_emb):
            os.mkdir(args.save_emb)
        model.save_emb(args.save_emb, args.dataset)

    # test
    if args.test:
360
        start = time.time()
361
362
        if args.num_test_proc > 1:
            queue = mp.Queue(args.num_test_proc)
363
            procs = []
364
365
366
367
368
369
370
            for i in range(args.num_test_proc):
                proc = mp.Process(target=test_mp, args=(args,
                                                        model,
                                                        [test_sampler_heads[i], test_sampler_tails[i]],
                                                        i,
                                                        'Test',
                                                        queue))
371
372
                procs.append(proc)
                proc.start()
373
374

            total_metrics = {}
375
376
377
378
379
380
381
382
            metrics = {}
            logs = []
            for i in range(args.num_test_proc):
                log = queue.get()
                logs = logs + log
            
            for metric in logs[0].keys():
                metrics[metric] = sum([log[metric] for log in logs]) / len(logs)
383
384
385
            for k, v in metrics.items():
                print('Test average {} at [{}/{}]: {}'.format(k, args.step, args.max_step, v))

386
387
388
389
            for proc in procs:
                proc.join()
        else:
            test(args, model, [test_sampler_head, test_sampler_tail])
390
        print('test:', time.time() - start)
391
392
393
394
395

if __name__ == '__main__':
    args = ArgParser().parse_args()
    logger = get_logger(args)
    run(args, logger)