gcn_cv_sc.py 11.3 KB
Newer Older
Ziyue Huang's avatar
Ziyue Huang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse, time, math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data


class NodeUpdate(nn.Module):
    def __init__(self, layer_id, in_feats, out_feats, dropout, activation=None, test=False, concat=False):
        super(NodeUpdate, self).__init__()
        self.layer_id = layer_id
        self.linear = nn.Linear(in_feats, out_feats)
        self.dropout = None
        if dropout != 0:
            self.dropout = nn.Dropout(p=dropout)
        self.activation = activation
        self.concat = concat
        self.test = test

    def forward(self, node):
        h = node.data['h']
        if self.test:
            norm = node.data['norm']
            h = h * norm
        else:
            agg_history_str = 'agg_h_{}'.format(self.layer_id-1)
            agg_history = node.data[agg_history_str]
            # control variate
            h = h + agg_history
            if self.dropout:
                h = self.dropout(h)
        h = self.linear(h)
        if self.concat:
            h = torch.cat((h, self.activation(h)), dim=1)
        elif self.activation:
            h = self.activation(h)
        return {'activation': h}


class GCNSampling(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCNSampling, self).__init__()
        self.n_layers = n_layers
        self.dropout = None
        if dropout != 0:
            self.dropout = nn.Dropout(p=dropout)
        self.activation = activation
        # input layer
        self.linear = nn.Linear(in_feats, n_hidden)
        self.layers = nn.ModuleList()
        # hidden layers
        for i in range(1, n_layers):
            skip_start = (i == n_layers-1)
            self.layers.append(NodeUpdate(i, n_hidden, n_hidden, dropout, activation, concat=skip_start))
        # output layer
        self.layers.append(NodeUpdate(n_layers, 2*n_hidden, n_classes, dropout))

    def forward(self, nf):
        h = nf.layers[0].data['preprocess']
        if self.dropout:
            h = self.dropout(h)
        h = self.linear(h)

        skip_start = (0 == self.n_layers-1)
        if skip_start:
            h = torch.cat((h, self.activation(h)), dim=1)
        else:
            h = self.activation(h)

        for i, layer in enumerate(self.layers):
            new_history = h.clone().detach()
            history_str = 'h_{}'.format(i)
            history = nf.layers[i].data[history_str]
            h = h - history

            nf.layers[i].data['h'] = h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             lambda node : {'h': node.mailbox['m'].mean(dim=1)},
                             layer)
            h = nf.layers[i+1].data.pop('activation')
            # update history
            if i < nf.num_layers-1:
                nf.layers[i].data[history_str] = new_history

        return h


class GCNInfer(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation):
        super(GCNInfer, self).__init__()
        self.n_layers = n_layers
        self.activation = activation
        # input layer
        self.linear = nn.Linear(in_feats, n_hidden)
        self.layers = nn.ModuleList()
        # hidden layers
        for i in range(1, n_layers):
            skip_start = (i == n_layers-1)
            self.layers.append(NodeUpdate(i, n_hidden, n_hidden, 0, activation, True, concat=skip_start))
        # output layer
        self.layers.append(NodeUpdate(n_layers, 2*n_hidden, n_classes, 0, None, True))

    def forward(self, nf):
        h = nf.layers[0].data['preprocess']
        h = self.linear(h)

        skip_start = (0 == self.n_layers-1)
        if skip_start:
            h = torch.cat((h, self.activation(h)), dim=1)
        else:
            h = self.activation(h)

        for i, layer in enumerate(self.layers):
            nf.layers[i].data['h'] = h
            nf.block_compute(i,
                             fn.copy_src(src='h', out='m'),
                             fn.sum(msg='m', out='h'),
                             layer)
            h = nf.layers[i+1].data.pop('activation')

        return h


def main(args):
    # load and preprocess dataset
    data = load_data(args)

    if args.self_loop and not args.dataset.startswith('reddit'):
        data.graph.add_edges_from([(i,i) for i in range(len(data.graph))])

    train_nid = np.nonzero(data.train_mask)[0].astype(np.int64)
    test_nid = np.nonzero(data.test_mask)[0].astype(np.int64)

    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
    train_mask = torch.ByteTensor(data.train_mask)
    val_mask = torch.ByteTensor(data.val_mask)
    test_mask = torch.ByteTensor(data.test_mask)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()

    n_train_samples = train_mask.sum().item()
    n_val_samples = val_mask.sum().item()
    n_test_samples = test_mask.sum().item()

    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
              n_train_samples,
              n_val_samples,
              n_test_samples))

    # create GCN model
    g = DGLGraph(data.graph, readonly=True)
    norm = 1. / g.in_degrees().float().unsqueeze(1)

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()
        norm = norm.cuda()

    g.ndata['features'] = features

    num_neighbors = args.num_neighbors
    n_layers = args.n_layers

    g.ndata['norm'] = norm

    g.update_all(fn.copy_src(src='features', out='m'),
                 fn.sum(msg='m', out='preprocess'),
                 lambda node : {'preprocess': node.data['preprocess'] * node.data['norm']})

    for i in range(n_layers):
        g.ndata['h_{}'.format(i)] = torch.zeros(features.shape[0], args.n_hidden).to(device=features.device)

    g.ndata['h_{}'.format(n_layers-1)] = torch.zeros(features.shape[0], 2*args.n_hidden).to(device=features.device)


    model = GCNSampling(in_feats,
                        args.n_hidden,
                        n_classes,
                        n_layers,
                        F.relu,
                        args.dropout)

    loss_fcn = nn.CrossEntropyLoss()

    infer_model = GCNInfer(in_feats,
                           args.n_hidden,
                           n_classes,
                           n_layers,
                           F.relu)

    if cuda:
        model.cuda()
        infer_model.cuda()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    for epoch in range(args.n_epochs):
        for nf in dgl.contrib.sampling.NeighborSampler(g, args.batch_size,
                                                       num_neighbors,
                                                       neighbor_type='in',
                                                       shuffle=True,
236
                                                       num_workers=32,
Ziyue Huang's avatar
Ziyue Huang committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
                                                       num_hops=n_layers,
                                                       seed_nodes=train_nid):
            for i in range(n_layers):
                agg_history_str = 'agg_h_{}'.format(i)
                g.pull(nf.layer_parent_nid(i+1).long(), fn.copy_src(src='h_{}'.format(i), out='m'),
                       fn.sum(msg='m', out=agg_history_str),
                       lambda node : {agg_history_str: node.data[agg_history_str] * node.data['norm']})

            node_embed_names = [['preprocess', 'h_0']]
            for i in range(1, n_layers):
                node_embed_names.append(['h_{}'.format(i), 'agg_h_{}'.format(i-1)])
            node_embed_names.append(['agg_h_{}'.format(n_layers-1)])
            nf.copy_from_parent(node_embed_names=node_embed_names)

            model.train()
            # forward
            pred = model(nf)
            batch_nids = nf.layer_parent_nid(-1).to(device=pred.device).long()
            batch_labels = labels[batch_nids]
            loss = loss_fcn(pred, batch_labels)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            node_embed_names = [['h_{}'.format(i)] for i in range(n_layers)]
            node_embed_names.append([])
            nf.copy_to_parent(node_embed_names=node_embed_names)


        for infer_param, param in zip(infer_model.parameters(), model.parameters()):
            infer_param.data.copy_(param.data)


        num_acc = 0.

        for nf in dgl.contrib.sampling.NeighborSampler(g, args.test_batch_size,
                                                       g.number_of_nodes(),
                                                       neighbor_type='in',
276
                                                       num_workers=32,
Ziyue Huang's avatar
Ziyue Huang committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
                                                       num_hops=n_layers,
                                                       seed_nodes=test_nid):
            node_embed_names = [['preprocess']]
            for i in range(n_layers):
                node_embed_names.append(['norm'])
            nf.copy_from_parent(node_embed_names=node_embed_names)

            infer_model.eval()
            with torch.no_grad():
                pred = infer_model(nf)
                batch_nids = nf.layer_parent_nid(-1).to(device=pred.device).long()
                batch_labels = labels[batch_nids]
                num_acc += (pred.argmax(dim=1) == batch_labels).sum().cpu().item()

        print("Test Accuracy {:.4f}". format(num_acc/n_test_samples))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=3e-2,
            help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
            help="number of training epochs")
    parser.add_argument("--batch-size", type=int, default=1000,
            help="train batch size")
    parser.add_argument("--test-batch-size", type=int, default=1000,
            help="test batch size")
    parser.add_argument("--num-neighbors", type=int, default=2,
            help="number of neighbors to be sampled")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
            help="number of hidden gcn layers")
    parser.add_argument("--self-loop", action='store_true',
            help="graph self-loop (default=False)")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
            help="Weight for L2 loss")
    args = parser.parse_args()

    print(args)

    main(args)