"tests/vscode:/vscode.git/clone" did not exist on "7202115ebbc64edb4000bdd7eed8f276a556304e"
dis_graphsage_cv.py 5.92 KB
Newer Older
1
import os, sys
2
3
4
5
6
7
8
9
10
import argparse, time, math
import numpy as np
import mxnet as mx
from mxnet import gluon
import argparse, time, math
import dgl
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
11
12
13
14
parentdir=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.insert(0, parentdir)
from graphsage_cv import GraphSAGELayer, NodeUpdate
from graphsage_cv import GraphSAGETrain, GraphSAGEInfer
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

def graphsage_cv_train(g, ctx, args, n_classes, train_nid, test_nid, n_test_samples, distributed):
    n0_feats = g.nodes[0].data['features']
    num_nodes = g.number_of_nodes()
    in_feats = n0_feats.shape[1]
    g_ctx = n0_feats.context

    norm = mx.nd.expand_dims(1./g.in_degrees().astype('float32'), 1)
    g.set_n_repr({'norm': norm.as_in_context(g_ctx)})
    degs = g.in_degrees().astype('float32').asnumpy()
    degs[degs > args.num_neighbors] = args.num_neighbors
    g.set_n_repr({'subg_norm': mx.nd.expand_dims(mx.nd.array(1./degs, ctx=g_ctx), 1)})
    n_layers = args.n_layers

    g.update_all(fn.copy_src(src='features', out='m'),
                 fn.sum(msg='m', out='preprocess'),
                 lambda node : {'preprocess': node.data['preprocess'] * node.data['norm']})
    for i in range(n_layers):
        g.init_ndata('h_{}'.format(i), (num_nodes, args.n_hidden), 'float32')
        g.init_ndata('agg_h_{}'.format(i), (num_nodes, args.n_hidden), 'float32')

    model = GraphSAGETrain(in_feats,
                           args.n_hidden,
                           n_classes,
                           n_layers,
                           args.dropout,
                           prefix='GraphSAGE')

    model.initialize(ctx=ctx)

    loss_fcn = gluon.loss.SoftmaxCELoss()

    infer_model = GraphSAGEInfer(in_feats,
                                 args.n_hidden,
                                 n_classes,
                                 n_layers,
                                 prefix='GraphSAGE')

    infer_model.initialize(ctx=ctx)

    # use optimizer
    print(model.collect_params())
    kv_type = 'dist_sync' if distributed else 'local'
    trainer = gluon.Trainer(model.collect_params(), 'adam',
                            {'learning_rate': args.lr, 'wd': args.weight_decay},
                            kvstore=mx.kv.create(kv_type))

    # Create sampler receiver
    sampler = dgl.contrib.sampling.SamplerReceiver(graph=g, addr=args.ip, num_sender=args.num_sampler)

    # initialize graph
    dur = []

    adj = g.adjacency_matrix().as_in_context(g_ctx)
    for epoch in range(args.n_epochs):
        start = time.time()
        if distributed:
            msg_head = "Worker {:d}, epoch {:d}".format(g.worker_id, epoch)
        else:
            msg_head = "epoch {:d}".format(epoch)
        for nf in sampler:
            for i in range(n_layers):
                agg_history_str = 'agg_h_{}'.format(i)
                dests = nf.layer_parent_nid(i+1).as_in_context(g_ctx)
                # TODO we could use DGLGraph.pull to implement this, but the current
                # implementation of pull is very slow. Let's manually do it for now.
                agg = mx.nd.dot(mx.nd.take(adj, dests), g.nodes[:].data['h_{}'.format(i)])
                g.set_n_repr({agg_history_str: agg}, dests)

            node_embed_names = [['preprocess', 'features', 'h_0']]
            for i in range(1, n_layers):
                node_embed_names.append(['h_{}'.format(i), 'agg_h_{}'.format(i-1), 'subg_norm', 'norm'])
            node_embed_names.append(['agg_h_{}'.format(n_layers-1), 'subg_norm', 'norm'])

            nf.copy_from_parent(node_embed_names=node_embed_names, ctx=ctx)
            # forward
            with mx.autograd.record():
                pred = model(nf)
                batch_nids = nf.layer_parent_nid(-1)
                batch_labels = g.nodes[batch_nids].data['labels'].as_in_context(ctx)
                loss = loss_fcn(pred, batch_labels)
                if distributed:
                    loss = loss.sum() / (len(batch_nids) * g.num_workers)
                else:
                    loss = loss.sum() / (len(batch_nids))

            loss.backward()
            trainer.step(batch_size=1)

            node_embed_names = [['h_{}'.format(i)] for i in range(n_layers)]
            node_embed_names.append([])

            nf.copy_to_parent(node_embed_names=node_embed_names)
        mx.nd.waitall()
        print(msg_head + ': training takes ' + str(time.time() - start))

        infer_params = infer_model.collect_params()

        for key in infer_params:
            idx = trainer._param2idx[key]
            trainer._kvstore.pull(idx, out=infer_params[key].data())

        num_acc = 0.
        num_tests = 0

        if not distributed or g.worker_id == 0:
            for nf in dgl.contrib.sampling.NeighborSampler(g, args.test_batch_size,
                                                           g.number_of_nodes(),
                                                           neighbor_type='in',
                                                           num_hops=n_layers,
                                                           seed_nodes=test_nid,
                                                           add_self_loop=True):
                node_embed_names = [['preprocess', 'features']]
                for i in range(n_layers):
                    node_embed_names.append(['norm', 'subg_norm'])
                nf.copy_from_parent(node_embed_names=node_embed_names, ctx=ctx)

                pred = infer_model(nf)
                batch_nids = nf.layer_parent_nid(-1)
                batch_labels = g.nodes[batch_nids].data['labels'].as_in_context(ctx)
                num_acc += (pred.argmax(axis=1) == batch_labels).sum().asscalar()
                num_tests += nf.layer_size(-1)
                if distributed:
                    g._sync_barrier()
                print(msg_head + ": Test Accuracy {:.4f}". format(num_acc/num_tests))
                break
        elif distributed:
                g._sync_barrier()