chunk_graph.py 7.7 KB
Newer Older
1
2
3
4
# See the __main__ block for usage of chunk_graph().
import json
import logging
import os
5
6
import pathlib
from contextlib import contextmanager
7
8

import torch
9
10
from utils import array_readwriter, setdir

11
12
13
14
15
16
17
18
19
import dgl


def chunk_numpy_array(arr, fmt_meta, chunk_sizes, path_fmt):
    paths = []
    offset = 0

    for j, n in enumerate(chunk_sizes):
        path = os.path.abspath(path_fmt % j)
20
21
        arr_chunk = arr[offset : offset + n]
        logging.info("Chunking %d-%d" % (offset, offset + n))
22
23
24
25
26
27
        array_readwriter.get_array_parser(**fmt_meta).write(path, arr_chunk)
        offset += n
        paths.append(path)

    return paths

28

29
30
def _chunk_graph(g, name, ndata_paths, edata_paths, num_chunks, output_path):
    # First deal with ndata and edata that are homogeneous (i.e. not a dict-of-dict)
31
32
33
    if len(g.ntypes) == 1 and not isinstance(
        next(iter(ndata_paths.values())), dict
    ):
34
        ndata_paths = {g.ntypes[0]: ndata_paths}
35
36
37
    if len(g.etypes) == 1 and not isinstance(
        next(iter(edata_paths.values())), dict
    ):
38
39
        edata_paths = {g.etypes[0]: ndata_paths}
    # Then convert all edge types to canonical edge types
40
41
42
43
    etypestrs = {etype: ":".join(etype) for etype in g.canonical_etypes}
    edata_paths = {
        ":".join(g.to_canonical_etype(k)): v for k, v in edata_paths.items()
    }
44
45
46

    metadata = {}

47
48
    metadata["graph_name"] = name
    metadata["node_type"] = g.ntypes
49
50

    # Compute the number of nodes per chunk per node type
51
    metadata["num_nodes_per_chunk"] = num_nodes_per_chunk = []
52
53
54
55
56
57
58
    for ntype in g.ntypes:
        num_nodes = g.num_nodes(ntype)
        num_nodes_list = []
        for i in range(num_chunks):
            n = num_nodes // num_chunks + (i < num_nodes % num_chunks)
            num_nodes_list.append(n)
        num_nodes_per_chunk.append(num_nodes_list)
59
60
61
    num_nodes_per_chunk_dict = {
        k: v for k, v in zip(g.ntypes, num_nodes_per_chunk)
    }
62

63
    metadata["edge_type"] = [etypestrs[etype] for etype in g.canonical_etypes]
64
65

    # Compute the number of edges per chunk per edge type
66
    metadata["num_edges_per_chunk"] = num_edges_per_chunk = []
67
68
69
70
71
72
73
    for etype in g.canonical_etypes:
        num_edges = g.num_edges(etype)
        num_edges_list = []
        for i in range(num_chunks):
            n = num_edges // num_chunks + (i < num_edges % num_chunks)
            num_edges_list.append(n)
        num_edges_per_chunk.append(num_edges_list)
74
75
76
    num_edges_per_chunk_dict = {
        k: v for k, v in zip(g.canonical_etypes, num_edges_per_chunk)
    }
77
78

    # Split edge index
79
80
    metadata["edges"] = {}
    with setdir("edge_index"):
81
82
        for etype in g.canonical_etypes:
            etypestr = etypestrs[etype]
83
            logging.info("Chunking edge index for %s" % etypestr)
84
85
            edges_meta = {}
            fmt_meta = {"name": "csv", "delimiter": " "}
86
            edges_meta["format"] = fmt_meta
87
88

            srcdst = torch.stack(g.edges(etype=etype), 1)
89
90
91
92
93
94
95
            edges_meta["data"] = chunk_numpy_array(
                srcdst.numpy(),
                fmt_meta,
                num_edges_per_chunk_dict[etype],
                etypestr + "%d.txt",
            )
            metadata["edges"][etypestr] = edges_meta
96
97

    # Chunk node data
98
99
    metadata["node_data"] = {}
    with setdir("node_data"):
100
101
102
103
        for ntype, ndata_per_type in ndata_paths.items():
            ndata_meta = {}
            with setdir(ntype):
                for key, path in ndata_per_type.items():
104
105
106
                    logging.info(
                        "Chunking node data for type %s key %s" % (ntype, key)
                    )
107
108
                    ndata_key_meta = {}
                    reader_fmt_meta = writer_fmt_meta = {"name": "numpy"}
109
110
111
112
113
114
115
116
117
118
                    arr = array_readwriter.get_array_parser(
                        **reader_fmt_meta
                    ).read(path)
                    ndata_key_meta["format"] = writer_fmt_meta
                    ndata_key_meta["data"] = chunk_numpy_array(
                        arr,
                        writer_fmt_meta,
                        num_nodes_per_chunk_dict[ntype],
                        key + "-%d.npy",
                    )
119
120
                    ndata_meta[key] = ndata_key_meta

121
            metadata["node_data"][ntype] = ndata_meta
122
123

    # Chunk edge data
124
125
    metadata["edge_data"] = {}
    with setdir("edge_data"):
126
127
128
129
        for etypestr, edata_per_type in edata_paths.items():
            edata_meta = {}
            with setdir(etypestr):
                for key, path in edata_per_type.items():
130
131
132
133
                    logging.info(
                        "Chunking edge data for type %s key %s"
                        % (etypestr, key)
                    )
134
135
                    edata_key_meta = {}
                    reader_fmt_meta = writer_fmt_meta = {"name": "numpy"}
136
137
138
139
140
141
142
143
144
145
146
                    arr = array_readwriter.get_array_parser(
                        **reader_fmt_meta
                    ).read(path)
                    edata_key_meta["format"] = writer_fmt_meta
                    etype = tuple(etypestr.split(":"))
                    edata_key_meta["data"] = chunk_numpy_array(
                        arr,
                        writer_fmt_meta,
                        num_edges_per_chunk_dict[etype],
                        key + "-%d.npy",
                    )
147
148
                    edata_meta[key] = edata_key_meta

149
            metadata["edge_data"][etypestr] = edata_meta
150

151
152
    metadata_path = "metadata.json"
    with open(metadata_path, "w") as f:
153
        json.dump(metadata, f)
154
155
    logging.info("Saved metadata in %s" % os.path.abspath(metadata_path))

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

def chunk_graph(g, name, ndata_paths, edata_paths, num_chunks, output_path):
    """
    Split the graph into multiple chunks.

    A directory will be created at :attr:`output_path` with the metadata and chunked
    edge list as well as the node/edge data.

    Parameters
    ----------
    g : DGLGraph
        The graph.
    name : str
        The name of the graph, to be used later in DistDGL training.
    ndata_paths : dict[str, pathlike] or dict[ntype, dict[str, pathlike]]
        The dictionary of paths pointing to the corresponding numpy array file for each
        node data key.
    edata_paths : dict[str, pathlike] or dict[etype, dict[str, pathlike]]
        The dictionary of paths pointing to the corresponding numpy array file for each
        edge data key.
    num_chunks : int
        The number of chunks
    output_path : pathlike
        The output directory saving the chunked graph.
    """
    for ntype, ndata in ndata_paths.items():
        for key in ndata.keys():
            ndata[key] = os.path.abspath(ndata[key])
    for etype, edata in edata_paths.items():
        for key in edata.keys():
            edata[key] = os.path.abspath(edata[key])
    with setdir(output_path):
        _chunk_graph(g, name, ndata_paths, edata_paths, num_chunks, output_path)

190
191
192
193
194
195

if __name__ == "__main__":
    logging.basicConfig(level="INFO")
    input_dir = "/data"
    output_dir = "/chunked-data"
    (g,), _ = dgl.load_graphs(os.path.join(input_dir, "graph.dgl"))
196
    chunk_graph(
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        g,
        "mag240m",
        {
            "paper": {
                "feat": os.path.join(input_dir, "paper/feat.npy"),
                "label": os.path.join(input_dir, "paper/label.npy"),
                "year": os.path.join(input_dir, "paper/year.npy"),
            }
        },
        {
            "cites": {"count": os.path.join(input_dir, "cites/count.npy")},
            "writes": {"year": os.path.join(input_dir, "writes/year.npy")},
            # you can put the same data file if they indeed share the features.
            "rev_writes": {"year": os.path.join(input_dir, "writes/year.npy")},
        },
        4,
        output_dir,
    )
215
# The generated metadata goes as in tools/sample-config/mag240m-metadata.json.