test_batching.py 7.52 KB
Newer Older
1
import torch as th
2
3
from torch.autograd import Variable
import numpy as np
4
5
6
7
8
from dgl.graph import DGLGraph

D = 5
reduce_msg_shapes = set()

9
10
11
12
def check_eq(a, b):
    assert a.shape == b.shape
    assert th.sum(a == b) == int(np.prod(list(a.shape)))

13
14
15
16
17
18
def message_func(src, edge):
    assert len(src['h'].shape) == 2
    assert src['h'].shape[1] == D
    return {'m' : src['h']}

def reduce_func(node, msgs):
Minjie Wang's avatar
Minjie Wang committed
19
20
21
22
23
24
    msgs = msgs['m']
    reduce_msg_shapes.add(tuple(msgs.shape))
    assert len(msgs.shape) == 3
    assert msgs.shape[2] == D
    return {'m' : th.sum(msgs, 1)}

25
26
def apply_node_func(node):
    return {'h' : node['h'] + node['m']}
Minjie Wang's avatar
Minjie Wang committed
27

28
def generate_graph(grad=False):
29
30
31
32
33
34
35
36
37
    g = DGLGraph()
    for i in range(10):
        g.add_node(i) # 10 nodes.
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
Minjie Wang's avatar
Minjie Wang committed
38
39
    ncol = Variable(th.randn(10, D), requires_grad=grad)
    g.set_n_repr({'h' : ncol})
40
41
42
43
44
45
46
47
48
    return g

def test_batch_setter_getter():
    def _pfc(x):
        return list(x.numpy()[:,0])
    g = generate_graph()
    # set all nodes
    g.set_n_repr({'h' : th.zeros((10, D))})
    assert _pfc(g.get_n_repr()['h']) == [0.] * 10
Minjie Wang's avatar
Minjie Wang committed
49
50
51
52
    # pop nodes
    assert _pfc(g.pop_n_repr('h')) == [0.] * 10
    assert len(g.get_n_repr()) == 0
    g.set_n_repr({'h' : th.zeros((10, D))})
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    # set partial nodes
    u = th.tensor([1, 3, 5])
    g.set_n_repr({'h' : th.ones((3, D))}, u)
    assert _pfc(g.get_n_repr()['h']) == [0., 1., 0., 1., 0., 1., 0., 0., 0., 0.]
    # get partial nodes
    u = th.tensor([1, 2, 3])
    assert _pfc(g.get_n_repr(u)['h']) == [1., 0., 1.]

    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
    0, 2, 2
    2, 9, 3
    0, 3, 4
    3, 9, 5
    0, 4, 6
    4, 9, 7
    0, 5, 8
    5, 9, 9
    0, 6, 10
    6, 9, 11
    0, 7, 12
    7, 9, 13
    0, 8, 14
    8, 9, 15
    9, 0, 16
    '''
    # set all edges
    g.set_e_repr({'l' : th.zeros((17, D))})
    assert _pfc(g.get_e_repr()['l']) == [0.] * 17
Minjie Wang's avatar
Minjie Wang committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    # pop edges
    assert _pfc(g.pop_e_repr('l')) == [0.] * 17
    assert len(g.get_e_repr()) == 0
    g.set_e_repr({'l' : th.zeros((17, D))})
    # set partial edges (many-many)
    u = th.tensor([0, 0, 2, 5, 9])
    v = th.tensor([1, 3, 9, 9, 0])
    g.set_e_repr({'l' : th.ones((5, D))}, u, v)
    truth = [0.] * 17
    truth[0] = truth[4] = truth[3] = truth[9] = truth[16] = 1.
    assert _pfc(g.get_e_repr()['l']) == truth
    # set partial edges (many-one)
    u = th.tensor([3, 4, 6])
    v = th.tensor([9])
    g.set_e_repr({'l' : th.ones((3, D))}, u, v)
    truth[5] = truth[7] = truth[11] = 1.
    assert _pfc(g.get_e_repr()['l']) == truth
    # set partial edges (one-many)
    u = th.tensor([0])
    v = th.tensor([4, 5, 6])
    g.set_e_repr({'l' : th.ones((3, D))}, u, v)
    truth[6] = truth[8] = truth[10] = 1.
    assert _pfc(g.get_e_repr()['l']) == truth
    # get partial edges (many-many)
    u = th.tensor([0, 6, 0])
    v = th.tensor([6, 9, 7])
    assert _pfc(g.get_e_repr(u, v)['l']) == [1., 1., 0.]
    # get partial edges (many-one)
    u = th.tensor([5, 6, 7])
    v = th.tensor([9])
    assert _pfc(g.get_e_repr(u, v)['l']) == [1., 1., 0.]
    # get partial edges (one-many)
    u = th.tensor([0])
    v = th.tensor([3, 4, 5])
    assert _pfc(g.get_e_repr(u, v)['l']) == [1., 1., 1.]
119

120
121
122
123
124
125
126
127
128
129
130
131
def test_batch_setter_autograd():
    g = generate_graph(grad=True)
    h1 = g.get_n_repr()['h']
    # partial set
    v = th.tensor([1, 2, 8])
    hh = Variable(th.zeros((len(v), D)), requires_grad=True)
    g.set_n_repr({'h' : hh}, v)
    h2 = g.get_n_repr()['h']
    h2.backward(th.ones((10, D)) * 2)
    check_eq(h1.grad[:,0], th.tensor([2., 0., 0., 2., 2., 2., 2., 2., 0., 2.]))
    check_eq(hh.grad[:,0], th.tensor([2., 2., 2.]))

132
133
134
135
136
137
def test_batch_send():
    g = generate_graph()
    def _fmsg(src, edge):
        assert src['h'].shape == (5, D)
        return {'m' : src['h']}
    g.register_message_func(_fmsg, batchable=True)
138
    # many-many send
139
140
    u = th.tensor([0, 0, 0, 0, 0])
    v = th.tensor([1, 2, 3, 4, 5])
141
142
    g.send(u, v)
    # one-many send
143
144
    u = th.tensor([0])
    v = th.tensor([1, 2, 3, 4, 5])
145
146
    g.send(u, v)
    # many-one send
147
148
    u = th.tensor([1, 2, 3, 4, 5])
    v = th.tensor([9])
149
    g.send(u, v)
150

151
def test_batch_recv():
Minjie Wang's avatar
Minjie Wang committed
152
    # basic recv test
153
154
155
    g = generate_graph()
    g.register_message_func(message_func, batchable=True)
    g.register_reduce_func(reduce_func, batchable=True)
156
    g.register_apply_node_func(apply_node_func, batchable=True)
Minjie Wang's avatar
Minjie Wang committed
157
158
159
    u = th.tensor([0, 0, 0, 4, 5, 6])
    v = th.tensor([1, 2, 3, 9, 9, 9])
    reduce_msg_shapes.clear()
160
    g.send(u, v)
Minjie Wang's avatar
Minjie Wang committed
161
162
163
164
    g.recv(th.unique(v))
    assert(reduce_msg_shapes == {(1, 3, D), (3, 1, D)})
    reduce_msg_shapes.clear()

165
166
167
168
def test_update_routines():
    g = generate_graph()
    g.register_message_func(message_func, batchable=True)
    g.register_reduce_func(reduce_func, batchable=True)
169
    g.register_apply_node_func(apply_node_func, batchable=True)
170

171
    # send_and_recv
172
173
174
    reduce_msg_shapes.clear()
    u = th.tensor([0, 0, 0, 4, 5, 6])
    v = th.tensor([1, 2, 3, 9, 9, 9])
175
    g.send_and_recv(u, v)
176
177
178
    assert(reduce_msg_shapes == {(1, 3, D), (3, 1, D)})
    reduce_msg_shapes.clear()

179
    # pull
180
181
    v = th.tensor([1, 2, 3, 9])
    reduce_msg_shapes.clear()
182
    g.pull(v)
183
184
185
    assert(reduce_msg_shapes == {(1, 8, D), (3, 1, D)})
    reduce_msg_shapes.clear()

186
    # push
187
188
    v = th.tensor([0, 1, 2, 3])
    reduce_msg_shapes.clear()
189
    g.push(v)
190
191
192
193
194
195
196
197
198
    assert(reduce_msg_shapes == {(1, 3, D), (8, 1, D)})
    reduce_msg_shapes.clear()

    # update_all
    reduce_msg_shapes.clear()
    g.update_all()
    assert(reduce_msg_shapes == {(1, 8, D), (9, 1, D)})
    reduce_msg_shapes.clear()

199
200
201
202
203
204
205
206
207
208
209
def test_reduce_0deg():
    g = DGLGraph()
    g.add_nodes_from([0, 1, 2, 3, 4])
    g.add_edge(1, 0)
    g.add_edge(2, 0)
    g.add_edge(3, 0)
    g.add_edge(4, 0)
    def _message(src, edge):
        return src
    def _reduce(node, msgs):
        assert msgs is not None
210
        return node + msgs.sum(1)
211
212
    old_repr = th.randn(5, 5)
    g.set_n_repr(old_repr)
213
    g.update_all(_message, _reduce, batchable=True)
214
215
216
217
218
    new_repr = g.get_n_repr()

    assert th.allclose(new_repr[1:], old_repr[1:])
    assert th.allclose(new_repr[0], old_repr.sum(0))

219
def test_pull_0deg():
220
221
222
223
224
225
226
227
228
229
230
    g = DGLGraph()
    g.add_nodes_from([0, 1])
    g.add_edge(0, 1)
    def _message(src, edge):
        return src
    def _reduce(node, msgs):
        assert msgs is not None
        return msgs.sum(1)

    old_repr = th.randn(2, 5)
    g.set_n_repr(old_repr)
231
    g.pull(0, _message, _reduce, batchable=True)
232
    new_repr = g.get_n_repr()
233
    assert th.allclose(new_repr[0], old_repr[0])
234
    assert th.allclose(new_repr[1], old_repr[1])
235
    g.pull(1, _message, _reduce, batchable=True)
236
    new_repr = g.get_n_repr()
237
    assert th.allclose(new_repr[1], old_repr[0])
238
239
240

    old_repr = th.randn(2, 5)
    g.set_n_repr(old_repr)
241
    g.pull([0, 1], _message, _reduce, batchable=True)
242
    new_repr = g.get_n_repr()
243
    assert th.allclose(new_repr[0], old_repr[0])
244
245
    assert th.allclose(new_repr[1], old_repr[0])

Minjie Wang's avatar
Minjie Wang committed
246
247
248
249
250
251
252
253
254
255
def _test_delete():
    g = generate_graph()
    ecol = Variable(th.randn(17, D), requires_grad=grad)
    g.set_e_repr({'e' : ecol})
    assert g.get_n_repr()['h'].shape[0] == 10
    assert g.get_e_repr()['e'].shape[0] == 17
    g.remove_node(0)
    assert g.get_n_repr()['h'].shape[0] == 9
    assert g.get_e_repr()['e'].shape[0] == 8

256
257
if __name__ == '__main__':
    test_batch_setter_getter()
258
    test_batch_setter_autograd()
259
    test_batch_send()
260
    test_batch_recv()
261
    test_update_routines()
262
    test_reduce_0deg()
263
    test_pull_0deg()
Minjie Wang's avatar
Minjie Wang committed
264
    #test_delete()