test_new_kvstore.py 10.7 KB
Newer Older
1
2
3
import os
import time
import numpy as np
4
import socket
5
6
7
8
9
from scipy import sparse as spsp
import dgl
import backend as F
import unittest, pytest
from dgl.graph_index import create_graph_index
10
import multiprocessing as mp
11
12
from numpy.testing import assert_array_equal

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
if os.name != 'nt':
    import fcntl
    import struct

def get_local_usable_addr():
    """Get local usable IP and port

    Returns
    -------
    str
        IP address, e.g., '192.168.8.12:50051'
    """
    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        # doesn't even have to be reachable
        sock.connect(('10.255.255.255', 1))
        ip_addr = sock.getsockname()[0]
    except ValueError:
        ip_addr = '127.0.0.1'
    finally:
        sock.close()
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    sock.listen(1)
    port = sock.getsockname()[1]
    sock.close()

    return ip_addr + ' ' + str(port)

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Create an one-part Graph
node_map = F.tensor([0,0,0,0,0,0], F.int64)
edge_map = F.tensor([0,0,0,0,0,0,0], F.int64)
global_nid = F.tensor([0,1,2,3,4,5], F.int64)
global_eid = F.tensor([0,1,2,3,4,5,6], F.int64)

g = dgl.DGLGraph()
g.add_nodes(6)
g.add_edge(0, 1) # 0
g.add_edge(0, 2) # 1
g.add_edge(0, 3) # 2
g.add_edge(2, 3) # 3
g.add_edge(1, 1) # 4
g.add_edge(0, 4) # 5
g.add_edge(2, 5) # 6

g.ndata[dgl.NID] = global_nid
g.edata[dgl.EID] = global_eid

gpb = dgl.distributed.GraphPartitionBook(part_id=0,
                                         num_parts=1,
                                         node_map=node_map,
                                         edge_map=edge_map,
                                         part_graph=g)

node_policy = dgl.distributed.PartitionPolicy(policy_str='node',
                                              partition_book=gpb)

edge_policy = dgl.distributed.PartitionPolicy(policy_str='edge',
                                              partition_book=gpb)

data_0 = F.tensor([[1.,1.],[1.,1.],[1.,1.],[1.,1.],[1.,1.],[1.,1.]], F.float32)
74
75
76
data_0_1 = F.tensor([1.,2.,3.,4.,5.,6.], F.float32)
data_0_2 = F.tensor([1,2,3,4,5,6], F.int32)
data_0_3 = F.tensor([1,2,3,4,5,6], F.int64)
77
78
79
80
81
82
83
data_1 = F.tensor([[2.,2.],[2.,2.],[2.,2.],[2.,2.],[2.,2.],[2.,2.],[2.,2.]], F.float32)
data_2 = F.tensor([[0.,0.],[0.,0.],[0.,0.],[0.,0.],[0.,0.],[0.,0.]], F.float32)

def init_zero_func(shape, dtype):
    return F.zeros(shape, dtype, F.cpu())

def udf_push(target, name, id_tensor, data_tensor):
84
85
86
87
    target[name][id_tensor] = data_tensor * data_tensor

def add_push(target, name, id_tensor, data_tensor):
    target[name][id_tensor] += data_tensor
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

@unittest.skipIf(os.name == 'nt' or os.getenv('DGLBACKEND') == 'tensorflow', reason='Do not support windows and TF yet')
def test_partition_policy():
    assert node_policy.policy_str == 'node'
    assert edge_policy.policy_str == 'edge'
    assert node_policy.part_id == 0
    assert edge_policy.part_id == 0
    local_nid = node_policy.to_local(F.tensor([0,1,2,3,4,5]))
    local_eid = edge_policy.to_local(F.tensor([0,1,2,3,4,5,6]))
    assert_array_equal(F.asnumpy(local_nid), F.asnumpy(F.tensor([0,1,2,3,4,5], F.int64)))
    assert_array_equal(F.asnumpy(local_eid), F.asnumpy(F.tensor([0,1,2,3,4,5,6], F.int64)))
    nid_partid = node_policy.to_partid(F.tensor([0,1,2,3,4,5], F.int64))
    eid_partid = edge_policy.to_partid(F.tensor([0,1,2,3,4,5,6], F.int64))
    assert_array_equal(F.asnumpy(nid_partid), F.asnumpy(F.tensor([0,0,0,0,0,0], F.int64)))
    assert_array_equal(F.asnumpy(eid_partid), F.asnumpy(F.tensor([0,0,0,0,0,0,0], F.int64)))
    assert node_policy.get_data_size() == len(node_map)
    assert edge_policy.get_data_size() == len(edge_map)

106
def start_server(server_id, num_clients):
107
	# Init kvserver
108
109
    print("Sleep 5 seconds to test client re-connect.")
    time.sleep(5)
110
    kvserver = dgl.distributed.KVServer(server_id=server_id,
111
                                        ip_config='kv_ip_config.txt',
112
                                        num_clients=num_clients)
113
114
    kvserver.add_part_policy(node_policy)
    kvserver.add_part_policy(edge_policy)
115
116
117
118
119
120
121
122
123
124
    if kvserver.is_backup_server():
        kvserver.init_data('data_0', 'node')
        kvserver.init_data('data_0_1', 'node')
        kvserver.init_data('data_0_2', 'node')
        kvserver.init_data('data_0_3', 'node')
    else:
        kvserver.init_data('data_0', 'node', data_0)
        kvserver.init_data('data_0_1', 'node', data_0_1)
        kvserver.init_data('data_0_2', 'node', data_0_2)
        kvserver.init_data('data_0_3', 'node', data_0_3)
125
    # start server
Jinjing Zhou's avatar
Jinjing Zhou committed
126
    server_state = dgl.distributed.ServerState(kv_store=kvserver, local_g=None, partition_book=None)
127
    dgl.distributed.start_server(server_id=server_id,
128
                                 ip_config='kv_ip_config.txt',
129
                                 num_clients=num_clients,
130
131
                                 server_state=server_state)

132
def start_client(num_clients):
133
134
135
136
    # Note: connect to server first !
    dgl.distributed.connect_to_server(ip_config='kv_ip_config.txt')
    # Init kvclient
    kvclient = dgl.distributed.KVClient(ip_config='kv_ip_config.txt')
137
    assert dgl.distributed.get_num_client() == num_clients
138
139
140
    kvclient.init_data(name='data_1', 
                       shape=F.shape(data_1), 
                       dtype=F.dtype(data_1), 
141
                       part_policy=edge_policy,
142
143
144
145
                       init_func=init_zero_func)
    kvclient.init_data(name='data_2', 
                       shape=F.shape(data_2), 
                       dtype=F.dtype(data_2), 
146
                       part_policy=node_policy,
147
148
149
150
151
152
153
154
                       init_func=init_zero_func)

    kvclient.map_shared_data(partition_book=gpb)
    
    # Test data_name_list
    name_list = kvclient.data_name_list()
    print(name_list)
    assert 'data_0' in name_list
155
156
157
    assert 'data_0_1' in name_list
    assert 'data_0_2' in name_list
    assert 'data_0_3' in name_list
158
159
160
161
162
163
164
165
    assert 'data_1' in name_list
    assert 'data_2' in name_list
    # Test get_meta_data
    meta = kvclient.get_data_meta('data_0')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_0)
    assert shape == F.shape(data_0)
    assert policy.policy_str == 'node'
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    meta = kvclient.get_data_meta('data_0_1')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_0_1)
    assert shape == F.shape(data_0_1)
    assert policy.policy_str == 'node'

    meta = kvclient.get_data_meta('data_0_2')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_0_2)
    assert shape == F.shape(data_0_2)
    assert policy.policy_str == 'node'

    meta = kvclient.get_data_meta('data_0_3')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_0_3)
    assert shape == F.shape(data_0_3)
    assert policy.policy_str == 'node'

185
186
187
188
189
    meta = kvclient.get_data_meta('data_1')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_1)
    assert shape == F.shape(data_1)
    assert policy.policy_str == 'edge'
190

191
192
193
194
195
    meta = kvclient.get_data_meta('data_2')
    dtype, shape, policy = meta
    assert dtype == F.dtype(data_2)
    assert shape == F.shape(data_2)
    assert policy.policy_str == 'node'
196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    # Test push and pull
    id_tensor = F.tensor([0,2,4], F.int64)
    data_tensor = F.tensor([[6.,6.],[6.,6.],[6.,6.]], F.float32)
    kvclient.push(name='data_0',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    kvclient.push(name='data_1',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    kvclient.push(name='data_2',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    res = kvclient.pull(name='data_0', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
    res = kvclient.pull(name='data_1', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
    res = kvclient.pull(name='data_2', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
    # Register new push handler
216
217
218
    kvclient.register_push_handler('data_0', udf_push)
    kvclient.register_push_handler('data_1', udf_push)
    kvclient.register_push_handler('data_2', udf_push)
219
220
221
222
223
224
225
226
227
228
    # Test push and pull
    kvclient.push(name='data_0',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    kvclient.push(name='data_1',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    kvclient.push(name='data_2',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
229
    kvclient.barrier()
230
231
232
233
234
235
236
    data_tensor = data_tensor * data_tensor
    res = kvclient.pull(name='data_0', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
    res = kvclient.pull(name='data_1', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
    res = kvclient.pull(name='data_2', id_tensor=id_tensor)
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
237
238
239
240
241
242

    # Test delete data
    kvclient.delete_data('data_0')
    kvclient.delete_data('data_1')
    kvclient.delete_data('data_2')

243
244
245
246
    # Register new push handler
    kvclient.init_data(name='data_3', 
                       shape=F.shape(data_2),
                       dtype=F.dtype(data_2), 
247
                       part_policy=node_policy,
248
249
250
251
252
253
254
255
256
257
258
259
260
                       init_func=init_zero_func)
    kvclient.register_push_handler('data_3', add_push)
    kvclient.map_shared_data(partition_book=gpb)
    data_tensor = F.tensor([[6.,6.],[6.,6.],[6.,6.]], F.float32)
    time.sleep(kvclient.client_id + 1)
    print("add...")
    kvclient.push(name='data_3',
                  id_tensor=id_tensor,
                  data_tensor=data_tensor)
    kvclient.barrier()
    res = kvclient.pull(name='data_3', id_tensor=id_tensor)
    data_tensor = data_tensor * num_clients
    assert_array_equal(F.asnumpy(res), F.asnumpy(data_tensor))
261
    # clean up
262
    kvclient.barrier()
263
264
265
266

@unittest.skipIf(os.name == 'nt' or os.getenv('DGLBACKEND') == 'tensorflow', reason='Do not support windows and TF yet')
def test_kv_store():
    ip_config = open("kv_ip_config.txt", "w")
267
268
    num_servers = 2
    num_clients = 2
269
    ip_addr = get_local_usable_addr()
270
    ip_config.write('{} {}\n'.format(ip_addr, num_servers))
271
    ip_config.close()
272
    ctx = mp.get_context('spawn')
273
274
    pserver_list = []
    pclient_list = []
275
276
    for i in range(num_servers):
        pserver = ctx.Process(target=start_server, args=(i, num_clients))
277
278
        pserver.start()
        pserver_list.append(pserver)
279
280
    for i in range(num_clients):
        pclient = ctx.Process(target=start_client, args=(num_clients,))
281
282
        pclient.start()
        pclient_list.append(pclient)
283
    for i in range(num_clients):
284
        pclient_list[i].join()
285
    for i in range(num_servers):
286
        pserver_list[i].join()
287
288
289

if __name__ == '__main__':
    test_partition_policy()
290
    test_kv_store()