"src/vscode:/vscode.git/clone" did not exist on "f040c27d4c017a37ea8f7270533f265c56de6f7e"
2_capsule.py 9.65 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
"""
.. _model-capsule:

4
5
6
Capsule Network Tutorial
===========================

Minjie Wang's avatar
Minjie Wang committed
7
8
**Author**: Jinjing Zhou, `Jake
Zhao <https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang
9
10
11
12

It is perhaps a little surprising that some of the more classical models can also be described in terms of graphs,
offering a different perspective.
This tutorial describes how this is done for the `capsule network <http://arxiv.org/abs/1710.09829>`__.
Minjie Wang's avatar
Minjie Wang committed
13
"""
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#######################################################################################
# Key ideas of Capsule
# --------------------
#
# There are two key ideas that the Capsule model offers.
#
# **Richer representations** In classic convolutional network, a scalar
# value represents the activation of a given feature. Instead, a capsule
# outputs a vector, whose norm represents the probability of a feature,
# and the orientation its properties.
#
# .. figure:: https://i.imgur.com/55Ovkdh.png
#    :alt:
#
# **Dynamic routing** To generalize max-pooling, there is another
# interesting proposed by the authors, as a representational more powerful
# way to construct higher level feature from its low levels. Consider a
# capsule :math:`u_i`. The way :math:`u_i` is integrated to the next level
# capsules take two steps:
#
# 1. :math:`u_i` projects differently to different higher level capsules
#    via a linear transformation: :math:`\hat{u}_{j|i} = W_{ij}u_i`.
# 2. :math:`\hat{u}_{j|i}` routes to the higher level capsules by
#    spreading itself with a weighted sum, and the weight is dynamically
#    determined by iteratively modify the and checking against the
#    "consistency" between :math:`\hat{u}_{j|i}` and :math:`v_j`, for any
#    :math:`v_j`. Note that this is similar to a k-means algorithm or
#    `competive
#    learning <https://en.wikipedia.org/wiki/Competitive_learning>`__ in
#    spirit. At the end of iterations, :math:`v_j` now integrates the
#    lower level capsules.
#
# The full algorithm is the following: |image0|
#
# The dynamic routing step can be naturally expressed as a graph
# algorithm. This is the focus of this tutorial. Our implementation is
# adapted from `Cedric
# Chee <https://github.com/cedrickchee/capsule-net-pytorch>`__, replacing
# only the routing layer, and achieving similar speed and accuracy.
#
# Model Implementation
# -----------------------------------
# Step 1: Setup and Graph Initialiation
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The below figure shows the directed bipartitie graph built for capsules
# network. We denote :math:`b_{ij}`, :math:`\hat{u}_{j|i}` as edge
# features and :math:`v_j` as node features. |image1|
#
import torch.nn as nn
import torch as th
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import dgl
Minjie Wang's avatar
Minjie Wang committed
69
70


71
def init_graph(in_nodes, out_nodes, f_size):
Minjie Wang's avatar
Minjie Wang committed
72
    g = dgl.DGLGraph()
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    all_nodes = in_nodes + out_nodes
    g.add_nodes(all_nodes)

    in_indx = list(range(in_nodes))
    out_indx = list(range(in_nodes, in_nodes + out_nodes))
    # add edges use edge broadcasting
    for u in in_indx:
        g.add_edges(u, out_indx)

    # init states
    g.ndata['v'] = th.zeros(all_nodes, f_size)
    g.edata['b'] = th.zeros(in_nodes * out_nodes, 1)
    return g


#########################################################################################
# Step 2: Define message passing functions
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Recall the following steps, and they are implemented in the class
# ``DGLRoutingLayer`` as the followings:
#
# 1. Normalize over out edges
#
#    -  Softmax over all out-edge of in-capsules
#       :math:`\textbf{c}_i = \text{softmax}(\textbf{b}_i)`.
#
# 2. Weighted sum over all in-capsules
#
#    -  Out-capsules equals weighted sum of in-capsules
#       :math:`s_j=\sum_i c_{ij}\hat{u}_{j|i}`
#
# 3. Squash Operation
#
#    -  Squashing function is to ensure that short capsule vectors get
#       shrunk to almost zero length while the long capsule vectors get
#       shrunk to a length slightly below 1. Its norm is expected to
#       represents probabilities at some levels.
#    -  :math:`v_j=\text{squash}(s_j)=\frac{||s_j||^2}{1+||s_j||^2}\frac{s_j}{||s_j||}`
#
# 4. Update weights by agreement
#
#    -  :math:`\hat{u}_{j|i}\cdot v_j` can be considered as agreement
#       between current capsule and updated capsule,
#       :math:`b_{ij}=b_{ij}+\hat{u}_{j|i}\cdot v_j`
class DGLRoutingLayer(nn.Module):
    def __init__(self, in_nodes, out_nodes, f_size):
        super(DGLRoutingLayer, self).__init__()
        self.g = init_graph(in_nodes, out_nodes, f_size)
        self.in_nodes = in_nodes
        self.out_nodes = out_nodes
        self.in_indx = list(range(in_nodes))
        self.out_indx = list(range(in_nodes, in_nodes + out_nodes))

    def forward(self, u_hat, routing_num=1):
        self.g.edata['u_hat'] = u_hat
        for r in range(routing_num):
            # step 1 (line 4): normalize over out edges
            in_edges = self.g.edata['b'].view(self.in_nodes, self.out_nodes)
            self.g.edata['c'] = F.softmax(in_edges, dim=1).view(-1, 1)

            def cap_message(edges):
                return {'m': edges.data['c'] * edges.data['u_hat']}
            self.g.register_message_func(cap_message)

            # step 2 (line 5)
            def cap_reduce(nodes):
                return {'s': th.sum(nodes.mailbox['m'], dim=1)}
            self.g.register_reduce_func(cap_reduce)

            # Execute step 1 & 2
            self.g.update_all()

            # step 3 (line 6)
            self.g.nodes[self.out_indx].data['v'] = self.squash(self.g.nodes[self.out_indx].data['s'], dim=1)

            # step 4 (line 7)
            v = th.cat([self.g.nodes[self.out_indx].data['v']] * self.in_nodes, dim=0)
            self.g.edata['b'] = self.g.edata['b'] + (self.g.edata['u_hat'] * v).sum(dim=1, keepdim=True)

    @staticmethod
    def squash(s, dim=1):
        sq = th.sum(s ** 2, dim=dim, keepdim=True)
        s_norm = th.sqrt(sq)
        s = (sq / (1.0 + sq)) * (s / s_norm)
        return s


############################################################################################################
# Step 3: Testing
# ~~~~~~~~~~~~~~~
#
# Let's make a simple 20x10 capsule layer:
in_nodes = 20
out_nodes = 10
f_size = 4
u_hat = th.randn(in_nodes * out_nodes, f_size)
routing = DGLRoutingLayer(in_nodes, out_nodes, f_size)

############################################################################################################
# We can visualize the behavior by monitoring the entropy of outgoing
# weights, they should start high and then drop, as the assignment
# gradually concentrate:
entropy_list = []
dist_list = []

for i in range(10):
    routing(u_hat)
    dist_matrix = routing.g.edata['c'].view(in_nodes, out_nodes)
    entropy = (-dist_matrix * th.log(dist_matrix)).sum(dim=1)
    entropy_list.append(entropy.data.numpy())
    dist_list.append(dist_matrix.data.numpy())

stds = np.std(entropy_list, axis=1)
means = np.mean(entropy_list, axis=1)
plt.errorbar(np.arange(len(entropy_list)), means, stds, marker='o')
plt.ylabel("Entropy of Weight Distribution")
plt.xlabel("Number of Routing")
plt.xticks(np.arange(len(entropy_list)))
plt.close()
############################################################################################################
#
# .. figure:: https://i.imgur.com/dMvu7p3.png
#    :alt:
Minjie Wang's avatar
Minjie Wang committed
196

197
198
import seaborn as sns
import matplotlib.animation as animation
Minjie Wang's avatar
Minjie Wang committed
199

200
201
202
fig = plt.figure(dpi=150)
fig.clf()
ax = fig.subplots()
Minjie Wang's avatar
Minjie Wang committed
203
204


205
206
207
208
209
def dist_animate(i):
    ax.cla()
    sns.distplot(dist_list[i].reshape(-1), kde=False, ax=ax)
    ax.set_xlabel("Weight Distribution Histogram")
    ax.set_title("Routing: %d" % (i))
Minjie Wang's avatar
Minjie Wang committed
210
211


212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
ani = animation.FuncAnimation(fig, dist_animate, frames=len(entropy_list), interval=500)
plt.close()

############################################################################################################
# Alternatively, we can also watch the evolution of histograms: |image2|
# Or monitor the how lower level capcules gradually attach to one of the higher level ones:
import networkx as nx
from networkx.algorithms import bipartite

g = routing.g.to_networkx()
X, Y = bipartite.sets(g)
height_in = 10
height_out = height_in * 0.8
height_in_y = np.linspace(0, height_in, in_nodes)
height_out_y = np.linspace((height_in - height_out) / 2, height_out, out_nodes)
pos = dict()

fig2 = plt.figure(figsize=(8, 3), dpi=150)
fig2.clf()
ax = fig2.subplots()
pos.update((n, (i, 1)) for i, n in zip(height_in_y, X))  # put nodes from X at x=1
pos.update((n, (i, 2)) for i, n in zip(height_out_y, Y))  # put nodes from Y at x=2


def weight_animate(i):
    ax.cla()
    ax.axis('off')
    ax.set_title("Routing: %d  " % i)
    dm = dist_list[i]
    nx.draw_networkx_nodes(g, pos, nodelist=range(in_nodes), node_color='r', node_size=100, ax=ax)
    nx.draw_networkx_nodes(g, pos, nodelist=range(in_nodes, in_nodes + out_nodes), node_color='b', node_size=100, ax=ax)
    for edge in g.edges():
        nx.draw_networkx_edges(g, pos, edgelist=[edge], width=dm[edge[0], edge[1] - in_nodes] * 1.5, ax=ax)


ani2 = animation.FuncAnimation(fig2, weight_animate, frames=len(dist_list), interval=500)
plt.close()

############################################################################################################
# |image3|
#
# The full code of this visulization is provided at
# `link <https://github.com/jermainewang/dgl/blob/master/examples/pytorch/capsule/simple_routing.py>`__; the complete
# code that trains on MNIST is at `link <https://github.com/jermainewang/dgl/tree/tutorial/examples/pytorch/capsule>`__.
#
# .. |image0| image:: https://i.imgur.com/mv1W9Rv.png
# .. |image1| image:: https://i.imgur.com/9tc6GLl.png
# .. |image2| image:: https://github.com/VoVAllen/DGL_Capsule/raw/master/routing_dist.gif
# .. |image3| image:: https://github.com/VoVAllen/DGL_Capsule/raw/master/routing_vis.gif
#