test_hetero_basics.py 22.8 KB
Newer Older
Minjie Wang's avatar
Minjie Wang committed
1
2
3
4
5
6
7
"""Test from `test_basics.py` but for heterograph. Merge this
with `test_basics.py` once DGLHeteroGraph is compatible with DGLGraph.
"""
import backend as F
import dgl
import networkx as nx
from collections import defaultdict as ddict
VoVAllen's avatar
VoVAllen committed
8
import unittest
9
10
11
import pytest
import inspect
from utils import parametrize_dtype
Minjie Wang's avatar
Minjie Wang committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

D = 5
reduce_msg_shapes = set()

def message_func(edges):
    assert F.ndim(edges.src['h']) == 2
    assert F.shape(edges.src['h'])[1] == D
    return {'m' : edges.src['h']}

def reduce_func(nodes):
    msgs = nodes.mailbox['m']
    reduce_msg_shapes.add(tuple(msgs.shape))
    assert F.ndim(msgs) == 3
    assert F.shape(msgs)[2] == D
    return {'accum' : F.sum(msgs, 1)}

def apply_node_func(nodes):
    return {'h' : nodes.data['h'] + nodes.data['accum']}

31
def generate_graph(idtype=F.int64, grad=False):
Minjie Wang's avatar
Minjie Wang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
    0, 2, 2
    2, 9, 3
    0, 3, 4
    3, 9, 5
    0, 4, 6
    4, 9, 7
    0, 5, 8
    5, 9, 9
    0, 6, 10
    6, 9, 11
    0, 7, 12
    7, 9, 13
    0, 8, 14
    8, 9, 15
    9, 0, 16
    '''
52
53
54
55
    u = F.tensor([0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 9])
    v = F.tensor([1, 9, 2, 9, 3, 9, 4, 9, 5, 9, 6, 9, 7, 9, 8, 9, 0])
    g = dgl.graph((u, v), idtype=idtype)
    assert g.device == F.ctx()
Minjie Wang's avatar
Minjie Wang committed
56
57
58
59
60
61
62
63
64
65
66
67
    ncol = F.randn((10, D))
    ecol = F.randn((17, D))
    if grad:
        ncol = F.attach_grad(ncol)
        ecol = F.attach_grad(ecol)

    g.ndata['h'] = ncol
    g.edata['w'] = ecol
    g.set_n_initializer(dgl.init.zero_initializer)
    g.set_e_initializer(dgl.init.zero_initializer)
    return g

68
69

@parametrize_dtype
70
71
def test_isolated_nodes(idtype):
    g = dgl.graph([(0, 1), (1, 2)], num_nodes=5, idtype=idtype, device=F.ctx())
72
73
74
    assert g.number_of_nodes() == 5

    # Test backward compatibility
75
    g = dgl.graph([(0, 1), (1, 2)], card=5, idtype=idtype, device=F.ctx())
76
77
    assert g.number_of_nodes() == 5

78
    g = dgl.bipartite([(0, 2), (0, 3), (1, 2)], 'user', 'plays',
79
80
                      'game', num_nodes=(5, 7), idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
81
82
83
84
    assert g.number_of_nodes('user') == 5
    assert g.number_of_nodes('game') == 7

    # Test backward compatibility
85
    g = dgl.bipartite([(0, 2), (0, 3), (1, 2)], 'user', 'plays',
86
87
                      'game', card=(5, 7), idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
88
89
90
    assert g.number_of_nodes('user') == 5
    assert g.number_of_nodes('game') == 7

91
@parametrize_dtype
92
def test_batch_setter_getter(idtype):
Minjie Wang's avatar
Minjie Wang committed
93
94
    def _pfc(x):
        return list(F.zerocopy_to_numpy(x)[:,0])
95
    g = generate_graph(idtype)
Minjie Wang's avatar
Minjie Wang committed
96
97
98
99
100
101
102
103
104
    # set all nodes
    g.ndata['h'] = F.zeros((10, D))
    assert F.allclose(g.ndata['h'], F.zeros((10, D)))
    # pop nodes
    old_len = len(g.ndata)
    assert _pfc(g.ndata.pop('h')) == [0.] * 10
    assert len(g.ndata) == old_len - 1
    g.ndata['h'] = F.zeros((10, D))
    # set partial nodes
105
    u = F.tensor([1, 3, 5], idtype)
Minjie Wang's avatar
Minjie Wang committed
106
107
108
    g.nodes[u].data['h'] = F.ones((3, D))
    assert _pfc(g.ndata['h']) == [0., 1., 0., 1., 0., 1., 0., 0., 0., 0.]
    # get partial nodes
109
    u = F.tensor([1, 2, 3], idtype)
Minjie Wang's avatar
Minjie Wang committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    assert _pfc(g.nodes[u].data['h']) == [1., 0., 1.]

    '''
    s, d, eid
    0, 1, 0
    1, 9, 1
    0, 2, 2
    2, 9, 3
    0, 3, 4
    3, 9, 5
    0, 4, 6
    4, 9, 7
    0, 5, 8
    5, 9, 9
    0, 6, 10
    6, 9, 11
    0, 7, 12
    7, 9, 13
    0, 8, 14
    8, 9, 15
    9, 0, 16
    '''
    # set all edges
    g.edata['l'] = F.zeros((17, D))
    assert _pfc(g.edata['l']) == [0.] * 17
    # pop edges
    old_len = len(g.edata)
    assert _pfc(g.edata.pop('l')) == [0.] * 17
    assert len(g.edata) == old_len - 1
    g.edata['l'] = F.zeros((17, D))
    # set partial edges (many-many)
141
142
    u = F.tensor([0, 0, 2, 5, 9], dtype=idtype)
    v = F.tensor([1, 3, 9, 9, 0], dtype=idtype)
Minjie Wang's avatar
Minjie Wang committed
143
144
145
146
147
    g.edges[u, v].data['l'] = F.ones((5, D))
    truth = [0.] * 17
    truth[0] = truth[4] = truth[3] = truth[9] = truth[16] = 1.
    assert _pfc(g.edata['l']) == truth
    # set partial edges (many-one)
148
149
    u = F.tensor([3, 4, 6], dtype=idtype)
    v = F.tensor([9], dtype=idtype)
Minjie Wang's avatar
Minjie Wang committed
150
151
152
153
    g.edges[u, v].data['l'] = F.ones((3, D))
    truth[5] = truth[7] = truth[11] = 1.
    assert _pfc(g.edata['l']) == truth
    # set partial edges (one-many)
154
155
    u = F.tensor([0], dtype=idtype)
    v = F.tensor([4, 5, 6], dtype=idtype)
Minjie Wang's avatar
Minjie Wang committed
156
157
158
159
    g.edges[u, v].data['l'] = F.ones((3, D))
    truth[6] = truth[8] = truth[10] = 1.
    assert _pfc(g.edata['l']) == truth
    # get partial edges (many-many)
160
161
    u = F.tensor([0, 6, 0], dtype=idtype)
    v = F.tensor([6, 9, 7], dtype=idtype)
Minjie Wang's avatar
Minjie Wang committed
162
163
    assert _pfc(g.edges[u, v].data['l']) == [1., 1., 0.]
    # get partial edges (many-one)
164
165
    u = F.tensor([5, 6, 7], dtype=idtype)
    v = F.tensor([9], dtype=idtype)
Minjie Wang's avatar
Minjie Wang committed
166
167
    assert _pfc(g.edges[u, v].data['l']) == [1., 1., 0.]
    # get partial edges (one-many)
168
169
    u = F.tensor([0], dtype=idtype)
    v = F.tensor([3, 4, 5], dtype=idtype)
Minjie Wang's avatar
Minjie Wang committed
170
171
    assert _pfc(g.edges[u, v].data['l']) == [1., 1., 1.]

172
173

@parametrize_dtype
174
175
def test_batch_setter_autograd(idtype):
    g = generate_graph(idtype=idtype, grad=True)
Minjie Wang's avatar
Minjie Wang committed
176
177
    h1 = g.ndata['h']
    # partial set
178
    v = F.tensor([1, 2, 8], idtype)
Minjie Wang's avatar
Minjie Wang committed
179
180
181
182
    hh = F.attach_grad(F.zeros((len(v), D)))
    with F.record_grad():
        g.nodes[v].data['h'] = hh
        h2 = g.ndata['h']
VoVAllen's avatar
VoVAllen committed
183
        F.backward(h2, F.ones((10, D)) * 2)
Minjie Wang's avatar
Minjie Wang committed
184
185
186
    assert F.array_equal(F.grad(h1)[:,0], F.tensor([2., 0., 0., 2., 2., 2., 2., 2., 0., 2.]))
    assert F.array_equal(F.grad(hh)[:,0], F.tensor([2., 2., 2.]))

187
188

@parametrize_dtype
189
def test_nx_conversion(idtype):
Minjie Wang's avatar
Minjie Wang committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    # check conversion between networkx and DGLGraph

    def _check_nx_feature(nxg, nf, ef):
        # check node and edge feature of nxg
        # this is used to check to_networkx
        num_nodes = len(nxg)
        num_edges = nxg.size()
        if num_nodes > 0:
            node_feat = ddict(list)
            for nid, attr in nxg.nodes(data=True):
                assert len(attr) == len(nf)
                for k in nxg.nodes[nid]:
                    node_feat[k].append(F.unsqueeze(attr[k], 0))
            for k in node_feat:
                feat = F.cat(node_feat[k], 0)
                assert F.allclose(feat, nf[k])
        else:
            assert len(nf) == 0
        if num_edges > 0:
            edge_feat = ddict(lambda: [0] * num_edges)
            for u, v, attr in nxg.edges(data=True):
                assert len(attr) == len(ef) + 1 # extra id
                eid = attr['id']
                for k in ef:
                    edge_feat[k][eid] = F.unsqueeze(attr[k], 0)
            for k in edge_feat:
                feat = F.cat(edge_feat[k], 0)
                assert F.allclose(feat, ef[k])
        else:
            assert len(ef) == 0

    n1 = F.randn((5, 3))
    n2 = F.randn((5, 10))
    n3 = F.randn((5, 4))
    e1 = F.randn((4, 5))
    e2 = F.randn((4, 7))
226
    g = dgl.graph([(0,2),(1,4),(3,0),(4,3)], idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
227
228
229
230
    g.ndata.update({'n1': n1, 'n2': n2, 'n3': n3})
    g.edata.update({'e1': e1, 'e2': e2})

    # convert to networkx
231
    nxg = dgl.to_networkx(g.cpu(), node_attrs=['n1', 'n3'], edge_attrs=['e1', 'e2'])
Minjie Wang's avatar
Minjie Wang committed
232
233
234
235
236
237
    assert len(nxg) == 5
    assert nxg.size() == 4
    _check_nx_feature(nxg, {'n1': n1, 'n3': n3}, {'e1': e1, 'e2': e2})

    # convert to DGLGraph, nx graph has id in edge feature
    # use id feature to test non-tensor copy
238
239
240
241
    g = dgl.from_networkx(nxg, node_attrs=['n1'], edge_attrs=['e1', 'id'], idtype=idtype)
    assert g.idtype == idtype
    assert g.device == F.cpu()
    g = g.to(F.ctx())
Minjie Wang's avatar
Minjie Wang committed
242
243
244
245
246
247
248
249
250
251
252
    # check graph size
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4
    # check number of features
    # test with existing dglgraph (so existing features should be cleared)
    assert len(g.ndata) == 1
    assert len(g.edata) == 2
    # check feature values
    assert F.allclose(g.ndata['n1'], n1)
    # with id in nx edge feature, e1 should follow original order
    assert F.allclose(g.edata['e1'], e1)
253
    assert F.array_equal(g.edata['id'], F.arange(0, 4, F.dtype(g.edata['id'])))
Minjie Wang's avatar
Minjie Wang committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

    # test conversion after modifying DGLGraph
    # TODO(minjie): enable after mutation is supported
    #g.pop_e_repr('id') # pop id so we don't need to provide id when adding edges
    #new_n = F.randn((2, 3))
    #new_e = F.randn((3, 5))
    #g.add_nodes(2, data={'n1': new_n})
    ## add three edges, one is a multi-edge
    #g.add_edges([3, 6, 0], [4, 5, 2], data={'e1': new_e})
    #n1 = F.cat((n1, new_n), 0)
    #e1 = F.cat((e1, new_e), 0)
    ## convert to networkx again
    #nxg = g.to_networkx(node_attrs=['n1'], edge_attrs=['e1'])
    #assert len(nxg) == 7
    #assert nxg.size() == 7
    #_check_nx_feature(nxg, {'n1': n1}, {'e1': e1})

    # now test convert from networkx without id in edge feature
    # first pop id in edge feature
    for _, _, attr in nxg.edges(data=True):
        attr.pop('id')
    # test with a new graph
276
    g = dgl.from_networkx(nxg, node_attrs=['n1'], edge_attrs=['e1'], idtype=idtype)
Minjie Wang's avatar
Minjie Wang committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    # check graph size
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4
    # check number of features
    assert len(g.ndata) == 1
    assert len(g.edata) == 1
    # check feature values
    assert F.allclose(g.ndata['n1'], n1)
    # edge feature order follows nxg.edges()
    edge_feat = []
    for _, _, attr in nxg.edges(data=True):
        edge_feat.append(F.unsqueeze(attr['e1'], 0))
    edge_feat = F.cat(edge_feat, 0)
    assert F.allclose(g.edata['e1'], edge_feat)

292
@parametrize_dtype
293
def test_apply_nodes(idtype):
Minjie Wang's avatar
Minjie Wang committed
294
295
    def _upd(nodes):
        return {'h' : nodes.data['h'] * 2}
296
    g = generate_graph(idtype=idtype)
Minjie Wang's avatar
Minjie Wang committed
297
298
299
    old = g.ndata['h']
    g.apply_nodes(_upd)
    assert F.allclose(old * 2, g.ndata['h'])
300
    u = F.tensor([0, 3, 4, 6], idtype)
Minjie Wang's avatar
Minjie Wang committed
301
302
303
    g.apply_nodes(lambda nodes : {'h' : nodes.data['h'] * 0.}, u)
    assert F.allclose(F.gather_row(g.ndata['h'], u), F.zeros((4, D)))

304
@parametrize_dtype
305
def test_apply_edges(idtype):
Minjie Wang's avatar
Minjie Wang committed
306
307
    def _upd(edges):
        return {'w' : edges.data['w'] * 2}
308
    g = generate_graph(idtype=idtype)
Minjie Wang's avatar
Minjie Wang committed
309
310
311
    old = g.edata['w']
    g.apply_edges(_upd)
    assert F.allclose(old * 2, g.edata['w'])
312
313
    u = F.tensor([0, 0, 0, 4, 5, 6], idtype)
    v = F.tensor([1, 2, 3, 9, 9, 9], idtype)
Minjie Wang's avatar
Minjie Wang committed
314
    g.apply_edges(lambda edges : {'w' : edges.data['w'] * 0.}, (u, v))
315
    eid = F.tensor(g.edge_ids(u, v), idtype)
Minjie Wang's avatar
Minjie Wang committed
316
317
    assert F.allclose(F.gather_row(g.edata['w'], eid), F.zeros((6, D)))

318
@parametrize_dtype
319
320
def test_update_routines(idtype):
    g = generate_graph(idtype=idtype)
Minjie Wang's avatar
Minjie Wang committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

    # send_and_recv
    reduce_msg_shapes.clear()
    u = [0, 0, 0, 4, 5, 6]
    v = [1, 2, 3, 9, 9, 9]
    g.send_and_recv((u, v), message_func, reduce_func, apply_node_func)
    assert(reduce_msg_shapes == {(1, 3, D), (3, 1, D)})
    reduce_msg_shapes.clear()
    try:
        g.send_and_recv([u, v], message_func, reduce_func, apply_node_func)
        assert False
    except dgl.DGLError:
        pass

    # pull
336
    v = F.tensor([1, 2, 3, 9], idtype)
Minjie Wang's avatar
Minjie Wang committed
337
338
339
340
341
342
    reduce_msg_shapes.clear()
    g.pull(v, message_func, reduce_func, apply_node_func)
    assert(reduce_msg_shapes == {(1, 8, D), (3, 1, D)})
    reduce_msg_shapes.clear()

    # push
343
    v = F.tensor([0, 1, 2, 3], idtype)
Minjie Wang's avatar
Minjie Wang committed
344
345
346
347
348
349
350
351
352
353
354
    reduce_msg_shapes.clear()
    g.push(v, message_func, reduce_func, apply_node_func)
    assert(reduce_msg_shapes == {(1, 3, D), (8, 1, D)})
    reduce_msg_shapes.clear()

    # update_all
    reduce_msg_shapes.clear()
    g.update_all(message_func, reduce_func, apply_node_func)
    assert(reduce_msg_shapes == {(1, 8, D), (9, 1, D)})
    reduce_msg_shapes.clear()

355
@parametrize_dtype
356
def test_update_all_0deg(idtype):
Minjie Wang's avatar
Minjie Wang committed
357
    # test#1
358
    g = dgl.graph([(1,0), (2,0), (3,0), (4,0)], idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
        return {'h' : nodes.data['h'] + F.sum(nodes.mailbox['m'], 1)}
    def _apply(nodes):
        return {'h' : nodes.data['h'] * 2}
    def _init2(shape, dtype, ctx, ids):
        return 2 + F.zeros(shape, dtype, ctx)
    g.set_n_initializer(_init2, 'h')
    old_repr = F.randn((5, 5))
    g.ndata['h'] = old_repr
    g.update_all(_message, _reduce, _apply)
    new_repr = g.ndata['h']
    # the first row of the new_repr should be the sum of all the node
    # features; while the 0-deg nodes should be initialized by the
    # initializer and applied with UDF.
    assert F.allclose(new_repr[1:], 2*(2+F.zeros((4,5))))
    assert F.allclose(new_repr[0], 2 * F.sum(old_repr, 0))

378
    # test#2:
379
    g = dgl.graph([], num_nodes=5, idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
380
381
382
383
384
385
386
    g.set_n_initializer(_init2, 'h')
    g.ndata['h'] = old_repr
    g.update_all(_message, _reduce, _apply)
    new_repr = g.ndata['h']
    # should fallback to apply
    assert F.allclose(new_repr, 2*old_repr)

387
@parametrize_dtype
388
389
def test_pull_0deg(idtype):
    g = dgl.graph([(0,1)], idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
        return {'h' : nodes.data['h'] + F.sum(nodes.mailbox['m'], 1)}
    def _apply(nodes):
        return {'h' : nodes.data['h'] * 2}
    def _init2(shape, dtype, ctx, ids):
        return 2 + F.zeros(shape, dtype, ctx)
    g.set_n_initializer(_init2, 'h')
    # test#1: pull both 0deg and non-0deg nodes
    old = F.randn((2, 5))
    g.ndata['h'] = old
    g.pull([0, 1], _message, _reduce, _apply)
    new = g.ndata.pop('h')
    # 0deg check: initialized with the func and got applied
    assert F.allclose(new[0], F.full_1d(5, 4, dtype=F.float32))
    # non-0deg check
    assert F.allclose(new[1], F.sum(old, 0) * 2)

    # test#2: pull only 0deg node
    old = F.randn((2, 5))
    g.ndata['h'] = old
    g.pull(0, _message, _reduce, _apply)
    new = g.ndata.pop('h')
    # 0deg check: fallback to apply
    assert F.allclose(new[0], 2*old[0])
    # non-0deg check: not touched
    assert F.allclose(new[1], old[1])

419
@parametrize_dtype
420
421
def test_send_multigraph(idtype):
    g = dgl.graph([(0,1), (0,1), (0,1), (2,1)], idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

    def _message_a(edges):
        return {'a': edges.data['a']}
    def _message_b(edges):
        return {'a': edges.data['a'] * 3}
    def _reduce(nodes):
        return {'a': F.max(nodes.mailbox['a'], 1)}

    def answer(*args):
        return F.max(F.stack(args, 0), 0)

    assert g.is_multigraph

    # send by eid
    old_repr = F.randn((4, 5))
    # send_and_recv_on
    g.ndata['a'] = F.zeros((3, 5))
    g.edata['a'] = old_repr
    g.send_and_recv([0, 2, 3], message_func=_message_a, reduce_func=_reduce)
    new_repr = g.ndata['a']
    assert F.allclose(new_repr[1], answer(old_repr[0], old_repr[2], old_repr[3]))
    assert F.allclose(new_repr[[0, 2]], F.zeros((2, 5)))

# Disabled - Heterograph doesn't support mutation
def _test_dynamic_addition():
    N = 3
    D = 1

    g = dgl.DGLGraph()

    # Test node addition
    g.add_nodes(N)
    g.ndata.update({'h1': F.randn((N, D)),
                    'h2': F.randn((N, D))})
    g.add_nodes(3)
    assert g.ndata['h1'].shape[0] == g.ndata['h2'].shape[0] == N + 3

    # Test edge addition
    g.add_edge(0, 1)
    g.add_edge(1, 0)
    g.edata.update({'h1': F.randn((2, D)),
                    'h2': F.randn((2, D))})
    assert g.edata['h1'].shape[0] == g.edata['h2'].shape[0] == 2

    g.add_edges([0, 2], [2, 0])
    g.edata['h1'] = F.randn((4, D))
    assert g.edata['h1'].shape[0] == g.edata['h2'].shape[0] == 4

    g.add_edge(1, 2)
    g.edges[4].data['h1'] = F.randn((1, D))
    assert g.edata['h1'].shape[0] == g.edata['h2'].shape[0] == 5

    # test add edge with part of the features
    g.add_edge(2, 1, {'h1': F.randn((1, D))})
    assert len(g.edata['h1']) == len(g.edata['h2'])

478
@parametrize_dtype
479
480
def test_repr(idtype):
    G = dgl.graph([(0,1), (0,2), (1,2)], num_nodes=10, idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
481
482
483
484
485
486
487
    repr_string = G.__repr__()
    print(repr_string)
    G.ndata['x'] = F.zeros((10, 5))
    G.edata['y'] = F.zeros((3, 4))
    repr_string = G.__repr__()
    print(repr_string)

VoVAllen's avatar
VoVAllen committed
488

489
@parametrize_dtype
490
def test_group_apply_edges(idtype):
Minjie Wang's avatar
Minjie Wang committed
491
492
493
494
495
496
497
498
499
500
501
502
    def edge_udf(edges):
        h = F.sum(edges.data['feat'] * (edges.src['h'] + edges.dst['h']), dim=2)
        normalized_feat = F.softmax(h, dim=1)
        return {"norm_feat": normalized_feat}

    elist = []
    for v in [1, 2, 3, 4, 5, 6, 7, 8]:
        elist.append((0, v))
    for v in [2, 3, 4, 6, 7, 8]:
        elist.append((1, v))
    for v in [2, 3, 4, 5, 6, 7, 8]:
        elist.append((2, v))
503
    g = dgl.graph(elist, idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

    g.ndata['h'] = F.randn((g.number_of_nodes(), D))
    g.edata['feat'] = F.randn((g.number_of_edges(), D))

    def _test(group_by):
        g.group_apply_edges(group_by=group_by, func=edge_udf)
        if group_by == 'src':
            u, v, eid = g.out_edges(1, form='all')
        else:
            u, v, eid = g.in_edges(5, form='all')
        out_feat = g.edges[eid].data['norm_feat']
        result = (g.nodes[u].data['h'] + g.nodes[v].data['h']) * g.edges[eid].data['feat']
        result = F.softmax(F.sum(result, dim=1), dim=0)
        assert F.allclose(out_feat, result)

    # test group by source nodes
    _test('src')

    # test group by destination nodes
    _test('dst')

525
@parametrize_dtype
526
527
528
def test_local_var(idtype):
    g = dgl.graph([(0,1), (1,2), (2,3), (3,4)], idtype=idtype, device=F.ctx())
    g = g.to(F.ctx())
Minjie Wang's avatar
Minjie Wang committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    g.ndata['h'] = F.zeros((g.number_of_nodes(), 3))
    g.edata['w'] = F.zeros((g.number_of_edges(), 4))
    # test override
    def foo(g):
        g = g.local_var()
        g.ndata['h'] = F.ones((g.number_of_nodes(), 3))
        g.edata['w'] = F.ones((g.number_of_edges(), 4))
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test out-place update
    def foo(g):
        g = g.local_var()
        g.nodes[[2, 3]].data['h'] = F.ones((2, 3))
        g.edges[[2, 3]].data['w'] = F.ones((2, 4))
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test out-place update 2
    def foo(g):
        g = g.local_var()
        g.apply_nodes(lambda nodes: {'h' : nodes.data['h'] + 10}, [2, 3])
        g.apply_edges(lambda edges: {'w' : edges.data['w'] + 10}, [2, 3])
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test auto-pop
    def foo(g):
        g = g.local_var()
        g.ndata['hh'] = F.ones((g.number_of_nodes(), 3))
        g.edata['ww'] = F.ones((g.number_of_edges(), 4))
    foo(g)
    assert 'hh' not in g.ndata
    assert 'ww' not in g.edata

    # test initializer1
565
566
    g = dgl.graph([(0,1), (1,1)], idtype=idtype, device=F.ctx())
    g = g.to(F.ctx())
Minjie Wang's avatar
Minjie Wang committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    g.set_n_initializer(dgl.init.zero_initializer)
    def foo(g):
        g = g.local_var()
        g.nodes[0].data['h'] = F.ones((1, 1))
        assert F.allclose(g.ndata['h'], F.tensor([[1.], [0.]]))
    foo(g)
    # test initializer2
    def foo_e_initializer(shape, dtype, ctx, id_range):
        return F.ones(shape)
    g.set_e_initializer(foo_e_initializer, field='h')
    def foo(g):
        g = g.local_var()
        g.edges[0, 1].data['h'] = F.ones((1, 1))
        assert F.allclose(g.edata['h'], F.ones((2, 1)))
        g.edges[0, 1].data['w'] = F.ones((1, 1))
        assert F.allclose(g.edata['w'], F.tensor([[1.], [0.]]))
    foo(g)

585
@parametrize_dtype
586
587
def test_local_scope(idtype):
    g = dgl.graph([(0,1), (1,2), (2,3), (3,4)], idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    g.ndata['h'] = F.zeros((g.number_of_nodes(), 3))
    g.edata['w'] = F.zeros((g.number_of_edges(), 4))
    # test override
    def foo(g):
        with g.local_scope():
            g.ndata['h'] = F.ones((g.number_of_nodes(), 3))
            g.edata['w'] = F.ones((g.number_of_edges(), 4))
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test out-place update
    def foo(g):
        with g.local_scope():
            g.nodes[[2, 3]].data['h'] = F.ones((2, 3))
            g.edges[[2, 3]].data['w'] = F.ones((2, 4))
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test out-place update 2
    def foo(g):
        with g.local_scope():
            g.apply_nodes(lambda nodes: {'h' : nodes.data['h'] + 10}, [2, 3])
            g.apply_edges(lambda edges: {'w' : edges.data['w'] + 10}, [2, 3])
    foo(g)
    assert F.allclose(g.ndata['h'], F.zeros((g.number_of_nodes(), 3)))
    assert F.allclose(g.edata['w'], F.zeros((g.number_of_edges(), 4)))
    # test auto-pop
    def foo(g):
        with g.local_scope():
            g.ndata['hh'] = F.ones((g.number_of_nodes(), 3))
            g.edata['ww'] = F.ones((g.number_of_edges(), 4))
    foo(g)
    assert 'hh' not in g.ndata
    assert 'ww' not in g.edata

    # test nested scope
    def foo(g):
        with g.local_scope():
            g.ndata['hh'] = F.ones((g.number_of_nodes(), 3))
            g.edata['ww'] = F.ones((g.number_of_edges(), 4))
            with g.local_scope():
                g.ndata['hhh'] = F.ones((g.number_of_nodes(), 3))
                g.edata['www'] = F.ones((g.number_of_edges(), 4))
            assert 'hhh' not in g.ndata
            assert 'www' not in g.edata
    foo(g)
    assert 'hh' not in g.ndata
    assert 'ww' not in g.edata

    # test initializer1
638
    g = dgl.graph([(0,1), (1,1)], idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    g.set_n_initializer(dgl.init.zero_initializer)
    def foo(g):
        with g.local_scope():
            g.nodes[0].data['h'] = F.ones((1, 1))
            assert F.allclose(g.ndata['h'], F.tensor([[1.], [0.]]))
    foo(g)
    # test initializer2
    def foo_e_initializer(shape, dtype, ctx, id_range):
        return F.ones(shape)
    g.set_e_initializer(foo_e_initializer, field='h')
    def foo(g):
        with g.local_scope():
            g.edges[0, 1].data['h'] = F.ones((1, 1))
            assert F.allclose(g.edata['h'], F.ones((2, 1)))
            g.edges[0, 1].data['w'] = F.ones((1, 1))
            assert F.allclose(g.edata['w'], F.tensor([[1.], [0.]]))
    foo(g)

657
@parametrize_dtype
658
def test_issue_1088(idtype):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
659
660
661
    # This test ensures that message passing on a heterograph with one edge type
    # would not crash (GitHub issue #1088).
    import dgl.function as fn
662
    g = dgl.heterograph({('U', 'E', 'V'): ([0, 1, 2], [1, 2, 3])}, idtype=idtype, device=F.ctx())
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
663
664
665
    g.nodes['U'].data['x'] = F.randn((3, 3))
    g.update_all(fn.copy_u('x', 'm'), fn.sum('m', 'y'))

Minjie Wang's avatar
Minjie Wang committed
666
if __name__ == '__main__':
667
668
    #test_isolated_nodes("int32")
    test_batch_setter_getter(F.int32)
669
    # test_batch_recv("int64")
670
    # test_apply_edges("int32")
671
672
673
674
675
    # test_batch_setter_autograd()
    # test_batch_send()
    # test_batch_recv()
    # test_apply_nodes()
    # test_apply_edges()
676
    #test_update_routines(F.int32)
677
678
679
680
681
682
683
684
685
686
    # test_recv_0deg()
    # test_recv_0deg_newfld()
    # test_update_all_0deg()
    # test_pull_0deg()
    # test_send_multigraph()
    # test_dynamic_addition()
    # test_repr()
    # test_group_apply_edges()
    # test_local_var()
    # test_local_scope()
687
688
    #test_issue_1088('int64')
    pass