array.cc 31.6 KB
Newer Older
1
2
3
4
5
6
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/array.cc
 * \brief DGL array utilities implementation
 */
#include <dgl/array.h>
7
#include <dgl/graph_traversal.h>
8
9
#include <dgl/packed_func_ext.h>
#include <dgl/runtime/container.h>
10
#include <dgl/runtime/shared_mem.h>
11
12
#include <dgl/runtime/device_api.h>
#include <sstream>
13
14
15
16
#include "../c_api_common.h"
#include "./array_op.h"
#include "./arith.h"

17
using namespace dgl::runtime;
18

19
namespace dgl {
20
21
22
23
24
25
26
27
28
29
30
31
32
33
namespace aten {

IdArray NewIdArray(int64_t length, DLContext ctx, uint8_t nbits) {
  return IdArray::Empty({length}, DLDataType{kDLInt, nbits, 1}, ctx);
}

IdArray Clone(IdArray arr) {
  IdArray ret = NewIdArray(arr->shape[0], arr->ctx, arr->dtype.bits);
  ret.CopyFrom(arr);
  return ret;
}

IdArray Range(int64_t low, int64_t high, uint8_t nbits, DLContext ctx) {
  IdArray ret;
34
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Range", {
35
36
37
38
39
40
41
42
43
44
45
46
47
    if (nbits == 32) {
      ret = impl::Range<XPU, int32_t>(low, high, ctx);
    } else if (nbits == 64) {
      ret = impl::Range<XPU, int64_t>(low, high, ctx);
    } else {
      LOG(FATAL) << "Only int32 or int64 is supported.";
    }
  });
  return ret;
}

IdArray Full(int64_t val, int64_t length, uint8_t nbits, DLContext ctx) {
  IdArray ret;
48
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Full", {
49
50
51
52
53
54
55
56
57
58
59
60
    if (nbits == 32) {
      ret = impl::Full<XPU, int32_t>(val, length, ctx);
    } else if (nbits == 64) {
      ret = impl::Full<XPU, int64_t>(val, length, ctx);
    } else {
      LOG(FATAL) << "Only int32 or int64 is supported.";
    }
  });
  return ret;
}

IdArray AsNumBits(IdArray arr, uint8_t bits) {
61
62
63
64
65
  CHECK(bits == 32 || bits == 64)
    << "Invalid ID type. Must be int32 or int64, but got int"
    << static_cast<int>(bits) << ".";
  if (arr->dtype.bits == bits)
    return arr;
66
67
  if (arr.NumElements() == 0)
    return NewIdArray(arr->shape[0], arr->ctx, bits);
68
  IdArray ret;
69
  ATEN_XPU_SWITCH_CUDA(arr->ctx.device_type, XPU, "AsNumBits", {
70
71
72
73
74
75
76
77
78
    ATEN_ID_TYPE_SWITCH(arr->dtype, IdType, {
      ret = impl::AsNumBits<XPU, IdType>(arr, bits);
    });
  });
  return ret;
}

IdArray HStack(IdArray lhs, IdArray rhs) {
  IdArray ret;
79
80
  CHECK_SAME_CONTEXT(lhs, rhs);
  CHECK_SAME_DTYPE(lhs, rhs);
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  CHECK_EQ(lhs->shape[0], rhs->shape[0]);
  auto device = runtime::DeviceAPI::Get(lhs->ctx);
  const auto& ctx = lhs->ctx;
  ATEN_ID_TYPE_SWITCH(lhs->dtype, IdType, {
    const int64_t len = lhs->shape[0];
    ret = NewIdArray(2 * len, lhs->ctx, lhs->dtype.bits);
    device->CopyDataFromTo(lhs.Ptr<IdType>(), 0,
                           ret.Ptr<IdType>(), 0,
                           len * sizeof(IdType),
                           ctx, ctx, lhs->dtype, nullptr);
    device->CopyDataFromTo(rhs.Ptr<IdType>(), 0,
                           ret.Ptr<IdType>(), len * sizeof(IdType),
                           len * sizeof(IdType),
                           ctx, ctx, lhs->dtype, nullptr);
Jinjing Zhou's avatar
Jinjing Zhou committed
95
96
97
98
  });
  return ret;
}

99
100
NDArray IndexSelect(NDArray array, IdArray index) {
  NDArray ret;
101
  CHECK_SAME_CONTEXT(array, index);
102
103
104
  CHECK_GE(array->ndim, 1) << "Only support array with at least 1 dimension";
  CHECK_EQ(array->shape[0], array.NumElements()) << "Only support tensor"
    << " whose first dimension equals number of elements, e.g. (5,), (5, 1)";
105
106
  CHECK_EQ(index->ndim, 1) << "Index array must be an 1D array.";
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "IndexSelect", {
107
108
109
110
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
        ret = impl::IndexSelect<XPU, DType, IdType>(array, index);
      });
111
112
113
114
115
    });
  });
  return ret;
}

116
template<typename ValueType>
117
ValueType IndexSelect(NDArray array, int64_t index) {
118
  CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
119
120
  CHECK(index >= 0 && index < array.NumElements())
    << "Index " << index << " is out of bound.";
121
  ValueType ret = 0;
122
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "IndexSelect", {
123
124
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ret = impl::IndexSelect<XPU, DType>(array, index);
125
126
127
128
    });
  });
  return ret;
}
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
template int32_t IndexSelect<int32_t>(NDArray array, int64_t index);
template int64_t IndexSelect<int64_t>(NDArray array, int64_t index);
template uint32_t IndexSelect<uint32_t>(NDArray array, int64_t index);
template uint64_t IndexSelect<uint64_t>(NDArray array, int64_t index);
template float IndexSelect<float>(NDArray array, int64_t index);
template double IndexSelect<double>(NDArray array, int64_t index);

NDArray IndexSelect(NDArray array, int64_t start, int64_t end) {
  CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
  CHECK(start >= 0 && start < array.NumElements())
    << "Index " << start << " is out of bound.";
  CHECK(end >= 0 && end <= array.NumElements())
    << "Index " << end << " is out of bound.";
  CHECK_LE(start, end);
  auto device = runtime::DeviceAPI::Get(array->ctx);
  const int64_t len = end - start;
  NDArray ret = NDArray::Empty({len}, array->dtype, array->ctx);
  ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
    device->CopyDataFromTo(array->data, start * sizeof(DType),
                           ret->data, 0, len * sizeof(DType),
                           array->ctx, ret->ctx, array->dtype, nullptr);
  });
  return ret;
}
153

154
155
NDArray Scatter(NDArray array, IdArray indices) {
  NDArray ret;
156
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Scatter", {
157
158
159
160
161
162
163
164
165
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(indices->dtype, IdType, {
        ret = impl::Scatter<XPU, DType, IdType>(array, indices);
      });
    });
  });
  return ret;
}

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
void Scatter_(IdArray index, NDArray value, NDArray out) {
  CHECK_SAME_DTYPE(value, out);
  CHECK_SAME_CONTEXT(index, value);
  CHECK_SAME_CONTEXT(index, out);
  CHECK_EQ(value->shape[0], index->shape[0]);
  if (index->shape[0] == 0)
    return;
  ATEN_XPU_SWITCH_CUDA(value->ctx.device_type, XPU, "Scatter_", {
    ATEN_DTYPE_SWITCH(value->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
        impl::Scatter_<XPU, DType, IdType>(index, value, out);
      });
    });
  });
}

182
183
NDArray Repeat(NDArray array, IdArray repeats) {
  NDArray ret;
184
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Repeat", {
185
186
187
188
189
190
191
192
193
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(repeats->dtype, IdType, {
        ret = impl::Repeat<XPU, DType, IdType>(array, repeats);
      });
    });
  });
  return ret;
}

194
195
IdArray Relabel_(const std::vector<IdArray>& arrays) {
  IdArray ret;
196
  ATEN_XPU_SWITCH(arrays[0]->ctx.device_type, XPU, "Relabel_", {
197
198
199
200
201
202
203
    ATEN_ID_TYPE_SWITCH(arrays[0]->dtype, IdType, {
      ret = impl::Relabel_<XPU, IdType>(arrays);
    });
  });
  return ret;
}

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
NDArray Concat(const std::vector<IdArray>& arrays) {
  CHECK(arrays.size() > 1) << "Number of arrays should larger than 1";
  IdArray ret;

  int64_t len = 0, offset = 0;
  for (size_t i = 0; i < arrays.size(); ++i) {
    len += arrays[i]->shape[0];
    CHECK_SAME_DTYPE(arrays[0], arrays[i]);
    CHECK_SAME_CONTEXT(arrays[0], arrays[i]);
  }

  NDArray ret_arr = NDArray::Empty({len},
                                   arrays[0]->dtype,
                                   arrays[0]->ctx);

  auto device = runtime::DeviceAPI::Get(arrays[0]->ctx);
  for (size_t i = 0; i < arrays.size(); ++i) {
    ATEN_DTYPE_SWITCH(arrays[i]->dtype, DType, "array", {
      device->CopyDataFromTo(
        static_cast<DType*>(arrays[i]->data),
        0,
        static_cast<DType*>(ret_arr->data),
        offset,
        arrays[i]->shape[0] * sizeof(DType),
        arrays[i]->ctx,
        ret_arr->ctx,
        arrays[i]->dtype,
        nullptr);

        offset += arrays[i]->shape[0] * sizeof(DType);
    });
  }

  return ret_arr;
}

240
241
242
template<typename ValueType>
std::tuple<NDArray, IdArray, IdArray> Pack(NDArray array, ValueType pad_value) {
  std::tuple<NDArray, IdArray, IdArray> ret;
243
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Pack", {
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
      ret = impl::Pack<XPU, DType>(array, static_cast<DType>(pad_value));
    });
  });
  return ret;
}

template std::tuple<NDArray, IdArray, IdArray> Pack<int32_t>(NDArray, int32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<int64_t>(NDArray, int64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint32_t>(NDArray, uint32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint64_t>(NDArray, uint64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<float>(NDArray, float);
template std::tuple<NDArray, IdArray, IdArray> Pack<double>(NDArray, double);

std::pair<NDArray, IdArray> ConcatSlices(NDArray array, IdArray lengths) {
  std::pair<NDArray, IdArray> ret;
260
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "ConcatSlices", {
261
262
263
264
265
266
267
268
269
    ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
      ATEN_ID_TYPE_SWITCH(lengths->dtype, IdType, {
        ret = impl::ConcatSlices<XPU, DType, IdType>(array, lengths);
      });
    });
  });
  return ret;
}

270
271
272
273
274
275
276
277
278
279
IdArray CumSum(IdArray array, bool prepend_zero) {
  IdArray ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "CumSum", {
    ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
      ret = impl::CumSum<XPU, IdType>(array, prepend_zero);
    });
  });
  return ret;
}

280
281
282
283
284
285
286
287
288
289
IdArray NonZero(NDArray array) {
  IdArray ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "NonZero", {
    ATEN_ID_TYPE_SWITCH(array->dtype, DType, {
      ret = impl::NonZero<XPU, DType>(array);
    });
  });
  return ret;
}

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
std::string ToDebugString(NDArray array) {
  std::ostringstream oss;
  NDArray a = array.CopyTo(DLContext{kDLCPU, 0});
  oss << "array([";
  ATEN_DTYPE_SWITCH(a->dtype, DType, "array", {
    for (int64_t i = 0; i < std::min<int64_t>(a.NumElements(), 10L); ++i) {
      oss << a.Ptr<DType>()[i] << ", ";
    }
  });
  if (a.NumElements() > 10)
    oss << "...";
  oss << "], dtype=" << array->dtype << ", ctx=" << array->ctx << ")";
  return oss.str();
}

305
306
307
///////////////////////// CSR routines //////////////////////////

bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
308
309
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
310
  bool ret = false;
311
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsNonZero", {
312
313
314
315
316
317
318
    ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
  });
  return ret;
}

NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  NDArray ret;
319
320
321
322
323
  CHECK_SAME_DTYPE(csr.indices, row);
  CHECK_SAME_DTYPE(csr.indices, col);
  CHECK_SAME_CONTEXT(csr.indices, row);
  CHECK_SAME_CONTEXT(csr.indices, col);
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsNonZero", {
324
325
326
327
328
329
330
    ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
  });
  return ret;
}

bool CSRHasDuplicate(CSRMatrix csr) {
  bool ret = false;
331
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRHasDuplicate", {
332
333
334
335
336
337
    ret = impl::CSRHasDuplicate<XPU, IdType>(csr);
  });
  return ret;
}

int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
338
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
339
  int64_t ret = 0;
340
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowNNZ", {
341
342
343
344
345
346
347
    ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray row) {
  NDArray ret;
348
349
350
  CHECK_SAME_DTYPE(csr.indices, row);
  CHECK_SAME_CONTEXT(csr.indices, row);
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowNNZ", {
351
352
353
354
355
356
    ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
357
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
358
  NDArray ret;
359
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowColumnIndices", {
360
361
362
363
364
365
    ret = impl::CSRGetRowColumnIndices<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
366
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
367
  NDArray ret;
368
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowData", {
369
    ret = impl::CSRGetRowData<XPU, IdType>(csr, row);
370
371
372
373
  });
  return ret;
}

374
375
376
377
378
379
380
381
382
383
bool CSRIsSorted(CSRMatrix csr) {
  if (csr.indices->shape[0] <= 1)
    return true;
  bool ret = false;
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsSorted", {
    ret = impl::CSRIsSorted<XPU, IdType>(csr);
  });
  return ret;
}

384
385
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols) {
  NDArray ret;
386
387
388
389
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
  CHECK_SAME_CONTEXT(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, cols);
390
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetData", {
391
    ret = impl::CSRGetData<XPU, IdType>(csr, rows, cols);
392
393
394
395
396
397
  });
  return ret;
}

std::vector<NDArray> CSRGetDataAndIndices(
    CSRMatrix csr, NDArray rows, NDArray cols) {
398
399
400
401
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
  CHECK_SAME_CONTEXT(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, cols);
402
  std::vector<NDArray> ret;
403
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetDataAndIndices", {
404
    ret = impl::CSRGetDataAndIndices<XPU, IdType>(csr, rows, cols);
405
406
407
408
409
410
  });
  return ret;
}

CSRMatrix CSRTranspose(CSRMatrix csr) {
  CSRMatrix ret;
411
412
413
414
  ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRTranspose", {
    ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
      ret = impl::CSRTranspose<XPU, IdType>(csr);
    });
415
416
417
418
419
420
421
  });
  return ret;
}

COOMatrix CSRToCOO(CSRMatrix csr, bool data_as_order) {
  COOMatrix ret;
  if (data_as_order) {
422
    ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOODataAsOrder", {
423
424
425
426
427
      ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
        ret = impl::CSRToCOODataAsOrder<XPU, IdType>(csr);
      });
    });
  } else {
428
    ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOO", {
429
430
431
432
433
434
435
436
437
      ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
        ret = impl::CSRToCOO<XPU, IdType>(csr);
      });
    });
  }
  return ret;
}

CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
438
439
440
  CHECK(start >= 0 && start < csr.num_rows) << "Invalid start index: " << start;
  CHECK(end >= 0 && end <= csr.num_rows) << "Invalid end index: " << end;
  CHECK_GE(end, start);
441
  CSRMatrix ret;
442
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceRows", {
443
    ret = impl::CSRSliceRows<XPU, IdType>(csr, start, end);
444
445
446
447
448
  });
  return ret;
}

CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
449
450
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, rows);
451
  CSRMatrix ret;
452
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceRows", {
453
    ret = impl::CSRSliceRows<XPU, IdType>(csr, rows);
454
455
456
457
458
  });
  return ret;
}

CSRMatrix CSRSliceMatrix(CSRMatrix csr, NDArray rows, NDArray cols) {
459
460
461
462
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
  CHECK_SAME_CONTEXT(csr.indices, rows);
  CHECK_SAME_CONTEXT(csr.indices, cols);
463
  CSRMatrix ret;
464
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceMatrix", {
465
    ret = impl::CSRSliceMatrix<XPU, IdType>(csr, rows, cols);
466
467
468
469
  });
  return ret;
}

470
void CSRSort_(CSRMatrix* csr) {
471
472
473
  if (csr->sorted)
    return;
  ATEN_CSR_SWITCH_CUDA(*csr, XPU, IdType, "CSRSort_", {
474
    impl::CSRSort_<XPU, IdType>(csr);
Da Zheng's avatar
Da Zheng committed
475
476
477
  });
}

Da Zheng's avatar
Da Zheng committed
478
479
480
481
482
483
484
485
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
  CSRMatrix ret;
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRReorder", {
    ret = impl::CSRReorder<XPU, IdType>(csr, new_row_ids, new_col_ids);
  });
  return ret;
}

486
487
CSRMatrix CSRRemove(CSRMatrix csr, IdArray entries) {
  CSRMatrix ret;
488
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRRemove", {
489
490
491
492
493
    ret = impl::CSRRemove<XPU, IdType>(csr, entries);
  });
  return ret;
}

494
495
496
COOMatrix CSRRowWiseSampling(
    CSRMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace) {
  COOMatrix ret;
497
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseSampling", {
498
    if (IsNullArray(prob)) {
499
500
501
502
503
504
505
506
507
508
509
510
      ret = impl::CSRRowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
    } else {
      ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
        ret = impl::CSRRowWiseSampling<XPU, IdType, FloatType>(
            mat, rows, num_samples, prob, replace);
      });
    }
  });
  return ret;
}

COOMatrix CSRRowWiseTopk(
511
    CSRMatrix mat, IdArray rows, int64_t k, NDArray weight, bool ascending) {
512
  COOMatrix ret;
513
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseTopk", {
514
515
    ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
      ret = impl::CSRRowWiseTopk<XPU, IdType, DType>(
516
517
518
519
520
521
          mat, rows, k, weight, ascending);
    });
  });
  return ret;
}

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

CSRMatrix UnionCsr(const std::vector<CSRMatrix>& csrs) {
  CSRMatrix ret;
  CHECK_GT(csrs.size(), 1) << "UnionCsr creates a union of multiple CSRMatrixes";
  // sanity check
  for (size_t i = 1; i < csrs.size(); ++i) {
    CHECK_EQ(csrs[0].num_rows, csrs[i].num_rows) <<
      "UnionCsr requires both CSRMatrix have same number of rows";
    CHECK_EQ(csrs[0].num_cols, csrs[i].num_cols) <<
      "UnionCsr requires both CSRMatrix have same number of cols";
    CHECK_SAME_CONTEXT(csrs[0].indptr, csrs[i].indptr);
    CHECK_SAME_DTYPE(csrs[0].indptr, csrs[i].indptr);
  }

  ATEN_CSR_SWITCH(csrs[0], XPU, IdType, "UnionCsr", {
    ret = impl::UnionCsr<XPU, IdType>(csrs);
  });
  return ret;
}


543
544
545
546
547
548
549
550
551
552
553
std::tuple<CSRMatrix, IdArray, IdArray>
CSRToSimple(const CSRMatrix& csr) {
  std::tuple<CSRMatrix, IdArray, IdArray> ret;

  CSRMatrix sorted_csr = (CSRIsSorted(csr)) ? csr : CSRSort(csr);
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRToSimple", {
    ret = impl::CSRToSimple<XPU, IdType>(sorted_csr);
  });
  return ret;
}

554
555
///////////////////////// COO routines //////////////////////////

556
557
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col) {
  bool ret = false;
558
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
559
560
561
562
563
564
565
    ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
  });
  return ret;
}

NDArray COOIsNonZero(COOMatrix coo, NDArray row, NDArray col) {
  NDArray ret;
566
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
567
568
569
570
571
    ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
  });
  return ret;
}

572
573
bool COOHasDuplicate(COOMatrix coo) {
  bool ret = false;
574
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOHasDuplicate", {
575
576
577
578
579
    ret = impl::COOHasDuplicate<XPU, IdType>(coo);
  });
  return ret;
}

580
581
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row) {
  int64_t ret = 0;
582
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowNNZ", {
583
584
585
586
587
588
589
    ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
  });
  return ret;
}

NDArray COOGetRowNNZ(COOMatrix coo, NDArray row) {
  NDArray ret;
590
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowNNZ", {
591
592
593
594
595
596
597
    ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
  });
  return ret;
}

std::pair<NDArray, NDArray> COOGetRowDataAndIndices(COOMatrix coo, int64_t row) {
  std::pair<NDArray, NDArray> ret;
598
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowDataAndIndices", {
599
    ret = impl::COOGetRowDataAndIndices<XPU, IdType>(coo, row);
600
601
602
603
604
605
606
  });
  return ret;
}

std::vector<NDArray> COOGetDataAndIndices(
    COOMatrix coo, NDArray rows, NDArray cols) {
  std::vector<NDArray> ret;
607
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetDataAndIndices", {
608
    ret = impl::COOGetDataAndIndices<XPU, IdType>(coo, rows, cols);
609
610
611
612
  });
  return ret;
}

613
614
615
616
617
618
619
620
NDArray COOGetData(COOMatrix coo, NDArray rows, NDArray cols) {
  NDArray ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetData", {
    ret = impl::COOGetData<XPU, IdType>(coo, rows, cols);
  });
  return ret;
}

621
COOMatrix COOTranspose(COOMatrix coo) {
622
  return COOMatrix(coo.num_cols, coo.num_rows, coo.col, coo.row, coo.data);
623
624
}

625
626
CSRMatrix COOToCSR(COOMatrix coo) {
  CSRMatrix ret;
627
628
629
630
  ATEN_XPU_SWITCH_CUDA(coo.row->ctx.device_type, XPU, "COOToCSR", {
    ATEN_ID_TYPE_SWITCH(coo.row->dtype, IdType, {
      ret = impl::COOToCSR<XPU, IdType>(coo);
    });
631
632
633
634
  });
  return ret;
}

635
636
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end) {
  COOMatrix ret;
637
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
638
    ret = impl::COOSliceRows<XPU, IdType>(coo, start, end);
639
640
641
642
643
644
  });
  return ret;
}

COOMatrix COOSliceRows(COOMatrix coo, NDArray rows) {
  COOMatrix ret;
645
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
646
    ret = impl::COOSliceRows<XPU, IdType>(coo, rows);
647
648
649
650
651
652
  });
  return ret;
}

COOMatrix COOSliceMatrix(COOMatrix coo, NDArray rows, NDArray cols) {
  COOMatrix ret;
653
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceMatrix", {
654
655
656
657
658
    ret = impl::COOSliceMatrix<XPU, IdType>(coo, rows, cols);
  });
  return ret;
}

659
660
661
662
663
664
void COOSort_(COOMatrix* mat, bool sort_column) {
  if ((mat->row_sorted && !sort_column) || mat->col_sorted)
    return;
  ATEN_XPU_SWITCH_CUDA(mat->row->ctx.device_type, XPU, "COOSort_", {
    ATEN_ID_TYPE_SWITCH(mat->row->dtype, IdType, {
      impl::COOSort_<XPU, IdType>(mat, sort_column);
665
    });
666
  });
667
668
669
670
671
672
673
674
675
}

std::pair<bool, bool> COOIsSorted(COOMatrix coo) {
  if (coo.row->shape[0] <= 1)
    return {true, true};
  std::pair<bool, bool> ret;
  ATEN_COO_SWITCH_CUDA(coo, XPU, IdType, "COOIsSorted", {
    ret = impl::COOIsSorted<XPU, IdType>(coo);
  });
676
677
678
  return ret;
}

679
680
681
682
683
684
685
686
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
  COOMatrix ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOReorder", {
    ret = impl::COOReorder<XPU, IdType>(coo, new_row_ids, new_col_ids);
  });
  return ret;
}

687
688
COOMatrix COORemove(COOMatrix coo, IdArray entries) {
  COOMatrix ret;
689
  ATEN_COO_SWITCH(coo, XPU, IdType, "COORemove", {
690
691
692
693
694
    ret = impl::COORemove<XPU, IdType>(coo, entries);
  });
  return ret;
}

695
696
697
COOMatrix COORowWiseSampling(
    COOMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace) {
  COOMatrix ret;
698
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseSampling", {
699
    if (IsNullArray(prob)) {
700
701
702
703
704
705
706
707
708
709
710
711
712
713
      ret = impl::COORowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
    } else {
      ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
        ret = impl::COORowWiseSampling<XPU, IdType, FloatType>(
            mat, rows, num_samples, prob, replace);
      });
    }
  });
  return ret;
}

COOMatrix COORowWiseTopk(
    COOMatrix mat, IdArray rows, int64_t k, FloatArray weight, bool ascending) {
  COOMatrix ret;
714
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseTopk", {
715
716
    ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
      ret = impl::COORowWiseTopk<XPU, IdType, DType>(
717
718
          mat, rows, k, weight, ascending);
    });
719
720
721
722
  });
  return ret;
}

723
724
std::pair<COOMatrix, IdArray> COOCoalesce(COOMatrix coo) {
  std::pair<COOMatrix, IdArray> ret;
725
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOCoalesce", {
726
727
728
729
730
    ret = impl::COOCoalesce<XPU, IdType>(coo);
  });
  return ret;
}

731
732
733
734
735
736
737
COOMatrix COOLineGraph(const COOMatrix &coo, bool backtracking) {
  COOMatrix ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOLineGraph", {
    ret = impl::COOLineGraph<XPU, IdType>(coo, backtracking);
  });
  return ret;
}
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

COOMatrix UnionCoo(const std::vector<COOMatrix>& coos) {
  COOMatrix ret;
  CHECK_GT(coos.size(), 1) << "UnionCoo creates a union of multiple COOMatrixes";
  // sanity check
  for (size_t i = 1; i < coos.size(); ++i) {
    CHECK_EQ(coos[0].num_rows, coos[i].num_rows) <<
      "UnionCoo requires both COOMatrix have same number of rows";
    CHECK_EQ(coos[0].num_cols, coos[i].num_cols) <<
      "UnionCoo requires both COOMatrix have same number of cols";
    CHECK_SAME_CONTEXT(coos[0].row, coos[i].row);
    CHECK_SAME_DTYPE(coos[0].row, coos[i].row);
  }

  // we assume the number of coos is not large in common cases
  std::vector<IdArray> coo_row;
  std::vector<IdArray> coo_col;
  bool has_data = false;

  for (size_t i = 0; i < coos.size(); ++i) {
    coo_row.push_back(coos[i].row);
    coo_col.push_back(coos[i].col);
    has_data |= COOHasData(coos[i]);
  }

  IdArray row = Concat(coo_row);
  IdArray col = Concat(coo_col);
  IdArray data = NullArray();

  if (has_data) {
    std::vector<IdArray> eid_data;
    eid_data.push_back(COOHasData(coos[0]) ?
                       coos[0].data :
                       Range(0,
                             coos[0].row->shape[0],
                             coos[0].row->dtype.bits,
                             coos[0].row->ctx));
    int64_t num_edges = coos[0].row->shape[0];
    for (size_t i = 1; i < coos.size(); ++i) {
      eid_data.push_back(COOHasData(coos[i]) ?
                         coos[i].data + num_edges :
                         Range(num_edges,
                               num_edges + coos[i].row->shape[0],
                               coos[i].row->dtype.bits,
                               coos[i].row->ctx));
      num_edges += coos[i].row->shape[0];
    }

    data = Concat(eid_data);
  }

  return COOMatrix(
    coos[0].num_rows,
    coos[0].num_cols,
    row,
    col,
    data,
    false,
    false);
}


800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
std::tuple<COOMatrix, IdArray, IdArray>
COOToSimple(const COOMatrix& coo) {
  // coo column sorted
  const COOMatrix sorted_coo = COOSort(coo, true);
  const IdArray eids_shuffled = COOHasData(sorted_coo) ?
    sorted_coo.data :
    Range(0, sorted_coo.row->shape[0], sorted_coo.row->dtype.bits, sorted_coo.row->ctx);
  const auto &coalesced_result = COOCoalesce(sorted_coo);
  const COOMatrix &coalesced_adj = coalesced_result.first;
  const IdArray &count = coalesced_result.second;

  /*
   * eids_shuffled actually already contains the mapping from old edge space to the
   * new one:
   *
   * * eids_shuffled[0:count[0]] indicates the original edge IDs that coalesced into new
   *   edge #0.
   * * eids_shuffled[count[0]:count[0] + count[1]] indicates those that coalesced into
   *   new edge #1.
   * * eids_shuffled[count[0] + count[1]:count[0] + count[1] + count[2]] indicates those
   *   that coalesced into new edge #2.
   * * etc.
   *
   * Here, we need to translate eids_shuffled to an array "eids_remapped" such that
   * eids_remapped[i] indicates the new edge ID the old edge #i is mapped to.  The
   * translation can simply be achieved by (in numpy code):
   *
   *     new_eid_for_eids_shuffled = np.range(len(count)).repeat(count)
   *     eids_remapped = np.zeros_like(new_eid_for_eids_shuffled)
   *     eids_remapped[eids_shuffled] = new_eid_for_eids_shuffled
   */
  const IdArray new_eids = Range(
    0, coalesced_adj.row->shape[0], coalesced_adj.row->dtype.bits, coalesced_adj.row->ctx);
  const IdArray eids_remapped = Scatter(Repeat(new_eids, count), eids_shuffled);

  COOMatrix ret = COOMatrix(
    coalesced_adj.num_rows,
    coalesced_adj.num_cols,
    coalesced_adj.row,
    coalesced_adj.col,
    NullArray(),
    true,
    true);
  return std::make_tuple(ret, count, eids_remapped);
}

846
///////////////////////// Graph Traverse routines //////////////////////////
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
Frontiers BFSNodesFrontiers(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSNodesFrontiers", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::BFSNodesFrontiers<XPU, IdType>(csr, source);
    });
  });
  return ret;
}

Frontiers BFSEdgesFrontiers(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSEdgesFrontiers", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::BFSEdgesFrontiers<XPU, IdType>(csr, source);
    });
  });
  return ret;
}

Frontiers TopologicalNodesFrontiers(const CSRMatrix& csr) {
  Frontiers ret;
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(csr.indptr->ctx.device_type, XPU, "TopologicalNodesFrontiers", {
    ATEN_ID_TYPE_SWITCH(csr.indices->dtype, IdType, {
      ret = impl::TopologicalNodesFrontiers<XPU, IdType>(csr);
    });
  });
  return ret;
}

Frontiers DGLDFSEdges(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSEdges", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::DGLDFSEdges<XPU, IdType>(csr, source);
    });
  });
  return ret;
}
906

907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
Frontiers DGLDFSLabeledEdges(const CSRMatrix& csr,
                             IdArray source,
                             const bool has_reverse_edge,
                             const bool has_nontree_edge,
                             const bool return_labels) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSLabeledEdges", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::DGLDFSLabeledEdges<XPU, IdType>(csr,
                                                  source,
                                                  has_reverse_edge,
                                                  has_nontree_edge,
                                                  return_labels);
    });
  });
  return ret;
}

931

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
///////////////////////// C APIs /////////////////////////
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFormat")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->format;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumRows")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->num_rows;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumCols")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->num_cols;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetIndices")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    const int64_t i = args[1];
    *rv = spmat->indices[i];
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFlags")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    List<Value> flags;
    for (bool flg : spmat->flags) {
      flags.push_back(Value(MakeValue(flg)));
    }
    *rv = flags;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLCreateSparseMatrix")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const int32_t format = args[0];
    const int64_t nrows = args[1];
    const int64_t ncols = args[2];
    const List<Value> indices = args[3];
    const List<Value> flags = args[4];
    std::shared_ptr<SparseMatrix> spmat(new SparseMatrix(
          format, nrows, ncols,
          ListValueToVector<IdArray>(indices),
          ListValueToVector<bool>(flags)));
    *rv = SparseMatrixRef(spmat);
  });

982
983
984
985
986
987
988
989
990
991
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLExistSharedMemArray")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string name = args[0];
#ifndef _WIN32
    *rv = SharedMemory::Exist(name);
#else
    *rv = false;
#endif  // _WIN32
  });

992
993
994
995
996
997
998
999
1000
1001
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLArrayCastToSigned")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray array = args[0];
    CHECK_EQ(array->dtype.code, kDLUInt);
    std::vector<int64_t> shape(array->shape, array->shape + array->ndim);
    DLDataType dtype = array->dtype;
    dtype.code = kDLInt;
    *rv = array.CreateView(shape, dtype, 0);
  });

1002
1003
}  // namespace aten
}  // namespace dgl
1004
1005
1006
1007

std::ostream& operator << (std::ostream& os, dgl::runtime::NDArray array) {
  return os << dgl::aten::ToDebugString(array);
}