README.md 3.27 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
Spatio-Temporal Graph Convolutional Networks
============

- Paper link: [arXiv](https://arxiv.org/pdf/1709.04875v4.pdf)
- Author's code repo: https://github.com/VeritasYin/STGCN_IJCAI-18.
Dependencies
------------
- PyTorch 1.1.0+
- sklearn
- dgl
11
- tables
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


How to run
----------
please get METR_LA dataset from [this Google drive](https://drive.google.com/open?id=10FOTa6HXPqX8Pf5WRoRwcFnW9BrNZEIX).
and [this Github repo](https://github.com/chnsh/DCRNN_PyTorch)

An experiment in default settings can be run with

```bash
python main.py
```

An experiment on the METR_LA dataset in customized settings can be run with
```bash
python main.py --lr --seed --disable-cuda --batch_size <batch-size> --epochs <number-of-epochs>
```

If one wishes to adjust the model structure, you can change the arguments `control_str` and `channels`
```bash
python main.py --control_str <control-string> --channels <n-input-channel> <n-hidden-channels-1> <n-hidden-channels-2> ... <n-output-channels>
```

`<control-string>` is a string of the following characters representing a sequence of neural network modules:

* `T`: representing a dilated temporal convolution layer, working on the temporal dimension.  The dilation factor is always twice as much as the previous temporal convolution layer.
* `S`: representing a graph convolution layer, working on the spatial dimension.  The input channels and output channels are the same.
* `N`: a Layer Normalization.

The argument list following `--channels` represents the output channels on each temporal convolution layer.  The list should have `N + 1` elements, where `N` is the number of `T`'s in `<control-string>`.

The activation function between two layers are always ReLU.

For example, the following command
```bash
python main.py --control_str TNTSTNTST --channels 1 16 32 32 64 128
```
specifies the following architecture:

```
+------------------------------------------------------------+
|                          Input                             |
+------------------------------------------------------------+
|  1D Conv, in_channel = 1, out_channel = 16, dilation = 1   |
+------------------------------------------------------------+
|                   Layer Normalization                      |
+------------------------------------------------------------+
|  1D Conv, in_channel = 16, out_channel = 32, dilation = 2  |
+------------------------------------------------------------+
|       Graph Conv, in_channel = 32, out_channel = 32        |
+------------------------------------------------------------+
|  1D Conv, in_channel = 32, out_channel = 32, dilation = 4  |
+------------------------------------------------------------+
|                   Layer Normalization                      |
+------------------------------------------------------------+
|  1D Conv, in_channel = 32, out_channel = 64, dilation = 8  |
+------------------------------------------------------------+
|       Graph Conv, in_channel = 64, out_channel = 64        |
+------------------------------------------------------------+
| 1D Conv, in_channel = 64, out_channel = 128, dilation = 16 |
+------------------------------------------------------------+
```

Results
-------

```bash
python main.py
```
METR_LA MAE: ~5.76