sign.py 7.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.function as fn
from dataset import load_dataset


class FeedForwardNet(nn.Module):
    def __init__(self, in_feats, hidden, out_feats, n_layers, dropout):
        super(FeedForwardNet, self).__init__()
        self.layers = nn.ModuleList()
        self.n_layers = n_layers
        if n_layers == 1:
            self.layers.append(nn.Linear(in_feats, out_feats))
        else:
            self.layers.append(nn.Linear(in_feats, hidden))
            for i in range(n_layers - 2):
                self.layers.append(nn.Linear(hidden, hidden))
            self.layers.append(nn.Linear(hidden, out_feats))
        if self.n_layers > 1:
            self.prelu = nn.PReLU()
            self.dropout = nn.Dropout(dropout)
        self.reset_parameters()

    def reset_parameters(self):
        gain = nn.init.calculate_gain("relu")
        for layer in self.layers:
            nn.init.xavier_uniform_(layer.weight, gain=gain)
            nn.init.zeros_(layer.bias)

    def forward(self, x):
        for layer_id, layer in enumerate(self.layers):
            x = layer(x)
            if layer_id < self.n_layers - 1:
                x = self.dropout(self.prelu(x))
        return x


class Model(nn.Module):
    def __init__(self, in_feats, hidden, out_feats, R, n_layers, dropout):
        super(Model, self).__init__()
        self.dropout = nn.Dropout(dropout)
        self.prelu = nn.PReLU()
        self.inception_ffs = nn.ModuleList()
        for hop in range(R + 1):
            self.inception_ffs.append(
                FeedForwardNet(in_feats, hidden, hidden, n_layers, dropout))
        # self.linear = nn.Linear(hidden * (R + 1), out_feats)
        self.project = FeedForwardNet((R + 1) * hidden, hidden, out_feats,
                                      n_layers, dropout)

    def forward(self, feats):
        hidden = []
        for feat, ff in zip(feats, self.inception_ffs):
            hidden.append(ff(feat))
        out = self.project(self.dropout(self.prelu(torch.cat(hidden, dim=-1))))
        return out


64
def calc_weight(g):
65
66
67
68
69
    """
    Compute row_normalized(D^(-1/2)AD^(-1/2))
    """
    with g.local_scope():
        # compute D^(-0.5)*D(-1/2), assuming A is Identity
70
71
        g.ndata["in_deg"] = g.in_degrees().float().pow(-0.5)
        g.ndata["out_deg"] = g.out_degrees().float().pow(-0.5)
72
73
74
75
76
77
78
        g.apply_edges(fn.u_mul_v("out_deg", "in_deg", "weight"))
        # row-normalize weight
        g.update_all(fn.copy_e("weight", "msg"), fn.sum("msg", "norm"))
        g.apply_edges(fn.e_div_v("weight", "norm", "weight"))
        return g.edata["weight"]


79
def preprocess(g, features, args):
80
81
82
83
    """
    Pre-compute the average of n-th hop neighbors
    """
    with torch.no_grad():
84
85
        g.edata["weight"] = calc_weight(g)
        g.ndata["feat_0"] = features
86
87
88
89
90
91
92
93
94
95
96
        for hop in range(1, args.R + 1):
            g.update_all(fn.u_mul_e(f"feat_{hop-1}", "weight", "msg"),
                         fn.sum("msg", f"feat_{hop}"))
        res = []
        for hop in range(args.R + 1):
            res.append(g.ndata.pop(f"feat_{hop}"))
        return res


def prepare_data(device, args):
    data = load_dataset(args.dataset)
97
98
99
100
101
    g, n_classes, train_nid, val_nid, test_nid = data
    g = g.to(device)
    in_feats = g.ndata['feat'].shape[1]
    feats = preprocess(g, g.ndata['feat'], args)
    labels = g.ndata['label']
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    # move to device
    train_nid = train_nid.to(device)
    val_nid = val_nid.to(device)
    test_nid = test_nid.to(device)
    train_feats = [x[train_nid] for x in feats]
    train_labels = labels[train_nid]
    return feats, labels, train_feats, train_labels, in_feats, \
        n_classes, train_nid, val_nid, test_nid


def evaluate(epoch, args, model, feats, labels, train, val, test):
    with torch.no_grad():
        batch_size = args.eval_batch_size
        if batch_size <= 0:
            pred = model(feats)
        else:
            pred = []
            num_nodes = labels.shape[0]
            n_batch = (num_nodes + batch_size - 1) // batch_size
            for i in range(n_batch):
                batch_start = i * batch_size
                batch_end = min((i + 1) * batch_size, num_nodes)
                batch_feats = [feat[batch_start: batch_end] for feat in feats]
                pred.append(model(batch_feats))
            pred = torch.cat(pred)

        pred = torch.argmax(pred, dim=1)
        correct = (pred == labels).float()
        train_acc = correct[train].sum() / len(train)
        val_acc = correct[val].sum() / len(val)
        test_acc = correct[test].sum() / len(test)
        return train_acc, val_acc, test_acc


def main(args):
    if args.gpu < 0:
        device = "cpu"
    else:
        device = "cuda:{}".format(args.gpu)

    data = prepare_data(device, args)
    feats, labels, train_feats, train_labels, in_size, num_classes, \
        train_nid, val_nid, test_nid = data

    model = Model(in_size, args.num_hidden, num_classes, args.R, args.ff_layer,
                  args.dropout)
    model = model.to(device)
    loss_fcn = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
                                 weight_decay=args.weight_decay)

    best_epoch = 0
    best_val = 0
    best_test = 0

    for epoch in range(1, args.num_epochs + 1):
        start = time.time()
        model.train()
        loss = loss_fcn(model(train_feats), train_labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch % args.eval_every == 0:
            model.eval()
            acc = evaluate(epoch, args, model, feats, labels,
                           train_nid, val_nid, test_nid)
            end = time.time()
            log = "Epoch {}, Times(s): {:.4f}".format(epoch, end - start)
            log += ", Accuracy: Train {:.4f}, Val {:.4f}, Test {:.4f}" \
                .format(*acc)
            print(log)
            if acc[1] > best_val:
                best_val = acc[1]
                best_epoch = epoch
                best_test = acc[2]

    print("Best Epoch {}, Val {:.4f}, Test {:.4f}".format(
        best_epoch, best_val, best_test))


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="SIGN")
    parser.add_argument("--num-epochs", type=int, default=1000)
    parser.add_argument("--num-hidden", type=int, default=256)
    parser.add_argument("--R", type=int, default=3,
                        help="number of hops")
    parser.add_argument("--lr", type=float, default=0.003)
    parser.add_argument("--dataset", type=str, default="amazon")
    parser.add_argument("--dropout", type=float, default=0.5)
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--weight-decay", type=float, default=0)
    parser.add_argument("--eval-every", type=int, default=50)
    parser.add_argument("--eval-batch-size", type=int, default=250000,
                        help="evaluation batch size, -1 for full batch")
    parser.add_argument("--ff-layer", type=int, default=2,
                        help="number of feed-forward layers")
    args = parser.parse_args()

    print(args)
    main(args)