dataset.py 1.41 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import torch
import numpy as np
import dgl


def load_dataset(name):
    dataset = name.lower()
    if dataset == "amazon":
        from ogb.nodeproppred.dataset_dgl import DglNodePropPredDataset
        dataset = DglNodePropPredDataset(name="ogbn-products")
        splitted_idx = dataset.get_idx_split()
        train_nid = splitted_idx["train"]
        val_nid = splitted_idx["valid"]
        test_nid = splitted_idx["test"]
        g, labels = dataset[0]
        n_classes = int(labels.max() - labels.min() + 1)
17
18
        g.ndata['label'] = labels.squeeze()
        g.ndata['feat'] = g.ndata['feat'].float()
19
20
21
22
    elif dataset in ["reddit", "cora"]:
        if dataset == "reddit":
            from dgl.data import RedditDataset
            data = RedditDataset(self_loop=True)
23
            g = data[0]
24
        else:
Mufei Li's avatar
Mufei Li committed
25
26
            from dgl.data import CitationGraphDataset
            data = CitationGraphDataset('cora')
27
            g = data[0]
28
        n_classes = data.num_labels
29
30
31
32
33
34
        train_mask = g.ndata['train_mask']
        val_mask = g.ndata['val_mask']
        test_mask = g.ndata['test_mask']
        train_nid = torch.LongTensor(train_mask.nonzero().squeeze())
        val_nid = torch.LongTensor(val_mask.nonzero().squeeze())
        test_nid = torch.LongTensor(test_mask.nonzero().squeeze())
35
36
37
38
    else:
        print("Dataset {} is not supported".format(name))
        assert(0)

39
    return g, n_classes, train_nid, val_nid, test_nid