"vscode:/vscode.git/clone" did not exist on "221de0edee129f9601857c7b7534d2a872382d7c"
train_cls.py 5.13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
torch.backends.cudnn.enabled = False
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import dgl
from dgl.data.utils import download, get_download_dir

from functools import partial
import tqdm
import urllib
import os
import argparse

# from dataset import ModelNet
import provider
from ModelNetDataLoader import ModelNetDataLoader
from pointnet_cls import PointNetCls
from pointnet2 import PointNet2SSGCls, PointNet2MSGCls

parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='pointnet')
parser.add_argument('--dataset-path', type=str, default='')
parser.add_argument('--load-model-path', type=str, default='')
parser.add_argument('--save-model-path', type=str, default='')
parser.add_argument('--num-epochs', type=int, default=200)
parser.add_argument('--num-workers', type=int, default=8)
parser.add_argument('--batch-size', type=int, default=32)
args = parser.parse_args()

num_workers = args.num_workers
batch_size = args.batch_size

data_filename = 'modelnet40_normal_resampled.zip'
download_path = os.path.join(get_download_dir(), data_filename)
local_path = args.dataset_path or os.path.join(get_download_dir(), 'modelnet40_normal_resampled')

if not os.path.exists(local_path):
40
41
    download('https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip',
             download_path, verify_ssl=False)
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    from zipfile import ZipFile
    with ZipFile(download_path) as z:
        z.extractall(path=get_download_dir())

CustomDataLoader = partial(
        DataLoader,
        num_workers=num_workers,
        batch_size=batch_size,
        shuffle=True,
        drop_last=True)

def train(net, opt, scheduler, train_loader, dev):

    net.train()

    total_loss = 0
    num_batches = 0
    total_correct = 0
    count = 0
    loss_f = nn.CrossEntropyLoss()
    with tqdm.tqdm(train_loader, ascii=True) as tq:
        for data, label in tq:
            data = data.data.numpy()
            data = provider.random_point_dropout(data)
            data[:, :, 0:3] = provider.random_scale_point_cloud(data[:, :, 0:3])
            data[:, :, 0:3] = provider.jitter_point_cloud(data[:, :, 0:3])
            data[:, :, 0:3] = provider.shift_point_cloud(data[:, :, 0:3])
            data = torch.tensor(data)
            label = label[:, 0]

            num_examples = label.shape[0]
            data, label = data.to(dev), label.to(dev).squeeze().long()
            opt.zero_grad()
            logits = net(data)
            loss = loss_f(logits, label)
            loss.backward()
            opt.step()

            _, preds = logits.max(1)

            num_batches += 1
            count += num_examples
            loss = loss.item()
            correct = (preds == label).sum().item()
            total_loss += loss
            total_correct += correct

            tq.set_postfix({
                'AvgLoss': '%.5f' % (total_loss / num_batches),
                'AvgAcc': '%.5f' % (total_correct / count)})
    scheduler.step()

def evaluate(net, test_loader, dev):
    net.eval()

    total_correct = 0
    count = 0

    with torch.no_grad():
        with tqdm.tqdm(test_loader, ascii=True) as tq:
            for data, label in tq:
                label = label[:,0]
                num_examples = label.shape[0]
                data, label = data.to(dev), label.to(dev).squeeze().long()
                logits = net(data)
                _, preds = logits.max(1)

                correct = (preds == label).sum().item()
                total_correct += correct
                count += num_examples

                tq.set_postfix({
                    'AvgAcc': '%.5f' % (total_correct / count)})

    return total_correct / count

dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")

if args.model == 'pointnet':
    net = PointNetCls(40, input_dims=6)
elif args.model == 'pointnet2_ssg':
    net = PointNet2SSGCls(40, batch_size, input_dims=6)
elif args.model == 'pointnet2_msg':
    net = PointNet2MSGCls(40, batch_size, input_dims=6)

net = net.to(dev)
if args.load_model_path:
    net.load_state_dict(torch.load(args.load_model_path, map_location=dev))

opt = optim.Adam(net.parameters(), lr=1e-3, weight_decay=1e-4)

scheduler = optim.lr_scheduler.StepLR(opt, step_size=20, gamma=0.7)

train_dataset = ModelNetDataLoader(local_path, 1024, split='train')
test_dataset = ModelNetDataLoader(local_path, 1024, split='test')
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, drop_last=True)

best_test_acc = 0

for epoch in range(args.num_epochs):
    train(net, opt, scheduler, train_loader, dev)
    if (epoch + 1) % 1 == 0:
        print('Epoch #%d Testing' % epoch)
        test_acc = evaluate(net, test_loader, dev)
        if test_acc > best_test_acc:
            best_test_acc = test_acc
            if args.save_model_path:
                torch.save(net.state_dict(), args.save_model_path)
        print('Current test acc: %.5f (best: %.5f)' % (
               test_acc, best_test_acc))