"vscode:/vscode.git/clone" did not exist on "ffe4aaee1da5ccfdda1c6228ae911d6f139b68eb"
pointnet2.py 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import dgl
import dgl.function as fn
from dgl.geometry.pytorch import FarthestPointSampler

'''
Part of the code are adapted from
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
'''

def square_distance(src, dst):
    '''
    Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
    '''
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist

def index_points(points, idx):
    '''
    Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
    '''
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    view_shape[1:] = [1] * (len(view_shape) - 1)
    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points

class FixedRadiusNearNeighbors(nn.Module):
    '''
    Find the neighbors with-in a fixed radius
    '''
    def __init__(self, radius, n_neighbor):
        super(FixedRadiusNearNeighbors, self).__init__()
        self.radius = radius
        self.n_neighbor = n_neighbor

    def forward(self, pos, centroids):
        '''
        Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
        '''
        device = pos.device
        B, N, _ = pos.shape
        center_pos = index_points(pos, centroids)
        _, S, _ = center_pos.shape
        group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
        sqrdists = square_distance(center_pos, pos)
        group_idx[sqrdists > self.radius ** 2] = N
        group_idx = group_idx.sort(dim=-1)[0][:, :, :self.n_neighbor]
        group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, self.n_neighbor])
        mask = group_idx == N
        group_idx[mask] = group_first[mask]
        return group_idx

class FixedRadiusNNGraph(nn.Module):
    '''
    Build NN graph
    '''
    def __init__(self, radius, n_neighbor):
        super(FixedRadiusNNGraph, self).__init__()
        self.radius = radius
        self.n_neighbor = n_neighbor
        self.frnn = FixedRadiusNearNeighbors(radius, n_neighbor)

    def forward(self, pos, centroids, feat=None):
        dev = pos.device
        group_idx = self.frnn(pos, centroids)
        B, N, _ = pos.shape
        glist = []
        for i in range(B):
            center = torch.zeros((N)).to(dev)
            center[centroids[i]] = 1
            src = group_idx[i].contiguous().view(-1)
            dst = centroids[i].view(-1, 1).repeat(1, self.n_neighbor).view(-1)

            unified = torch.cat([src, dst])
            uniq, inv_idx = torch.unique(unified, return_inverse=True)
            src_idx = inv_idx[:src.shape[0]]
            dst_idx = inv_idx[src.shape[0]:]

92
            g = dgl.graph((src_idx, dst_idx))
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
            g.ndata['pos'] = pos[i][uniq]
            g.ndata['center'] = center[uniq]
            if feat is not None:
                g.ndata['feat'] = feat[i][uniq]
            glist.append(g)
        bg = dgl.batch(glist)
        return bg

class RelativePositionMessage(nn.Module):
    '''
    Compute the input feature from neighbors
    '''
    def __init__(self, n_neighbor):
        super(RelativePositionMessage, self).__init__()
        self.n_neighbor = n_neighbor

    def forward(self, edges):
        pos = edges.src['pos'] - edges.dst['pos']
        if 'feat' in edges.src:
            res = torch.cat([pos, edges.src['feat']], 1)
        else:
            res = pos
        return {'agg_feat': res}

class PointNetConv(nn.Module):
    '''
    Feature aggregation
    '''
    def __init__(self, sizes, batch_size):
        super(PointNetConv, self).__init__()
        self.batch_size = batch_size
        self.conv = nn.ModuleList()
        self.bn = nn.ModuleList()
        for i in range(1, len(sizes)):
            self.conv.append(nn.Conv2d(sizes[i-1], sizes[i], 1))
            self.bn.append(nn.BatchNorm2d(sizes[i]))

    def forward(self, nodes):
        shape = nodes.mailbox['agg_feat'].shape
        h = nodes.mailbox['agg_feat'].view(self.batch_size, -1, shape[1], shape[2]).permute(0, 3, 1, 2)
        for conv, bn in zip(self.conv, self.bn):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)
        h = torch.max(h, 3)[0]
        feat_dim = h.shape[1]
        h = h.permute(0, 2, 1).reshape(-1, feat_dim)
        return {'new_feat': h}
    
    def group_all(self, pos, feat):
        '''
        Feature aggretation and pooling for the non-sampling layer
        '''
        if feat is not None:
            h = torch.cat([pos, feat], 2)
        else:
            h = pos
        shape = h.shape
        h = h.permute(0, 2, 1).view(shape[0], shape[2], shape[1], 1)
        for conv, bn in zip(self.conv, self.bn):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)
        h = torch.max(h[:, :, :, 0], 2)[0]
        return h

class SAModule(nn.Module):
    """
    The Set Abstraction Layer
    """
    def __init__(self, npoints, batch_size, radius, mlp_sizes, n_neighbor=64,
                 group_all=False):
        super(SAModule, self).__init__()
        self.group_all = group_all
        if not group_all:
            self.fps = FarthestPointSampler(npoints)
            self.frnn_graph = FixedRadiusNNGraph(radius, n_neighbor)
        self.message = RelativePositionMessage(n_neighbor)
        self.conv = PointNetConv(mlp_sizes, batch_size)
        self.batch_size = batch_size

    def forward(self, pos, feat):
        if self.group_all:
            return self.conv.group_all(pos, feat)

        centroids = self.fps(pos)
        g = self.frnn_graph(pos, centroids, feat)
        g.update_all(self.message, self.conv)
        mask = g.ndata['center'] == 1
        pos_dim = g.ndata['pos'].shape[-1]
        feat_dim = g.ndata['new_feat'].shape[-1]
        pos_res = g.ndata['pos'][mask].view(self.batch_size, -1, pos_dim)
        feat_res = g.ndata['new_feat'][mask].view(self.batch_size, -1, feat_dim)
        return pos_res, feat_res

class SAMSGModule(nn.Module):
    """
    The Set Abstraction Multi-Scale grouping Layer
    """
    def __init__(self, npoints, batch_size, radius_list, n_neighbor_list, mlp_sizes_list):
        super(SAMSGModule, self).__init__()
        self.batch_size = batch_size
        self.group_size = len(radius_list)

        self.fps = FarthestPointSampler(npoints)
        self.frnn_graph_list = nn.ModuleList()
        self.message_list = nn.ModuleList()
        self.conv_list = nn.ModuleList()
        for i in range(self.group_size):
            self.frnn_graph_list.append(FixedRadiusNNGraph(radius_list[i],
                                                           n_neighbor_list[i]))
            self.message_list.append(RelativePositionMessage(n_neighbor_list[i]))
            self.conv_list.append(PointNetConv(mlp_sizes_list[i], batch_size))

    def forward(self, pos, feat):
        centroids = self.fps(pos)
        feat_res_list = []
        for i in range(self.group_size):
            g = self.frnn_graph_list[i](pos, centroids, feat)
            g.update_all(self.message_list[i], self.conv_list[i])
            mask = g.ndata['center'] == 1
            pos_dim = g.ndata['pos'].shape[-1]
            feat_dim = g.ndata['new_feat'].shape[-1]
            if i == 0:
                pos_res = g.ndata['pos'][mask].view(self.batch_size, -1, pos_dim)
            feat_res = g.ndata['new_feat'][mask].view(self.batch_size, -1, feat_dim)
            feat_res_list.append(feat_res)
        feat_res = torch.cat(feat_res_list, 2)
        return pos_res, feat_res

class PointNet2SSGCls(nn.Module):
    def __init__(self, output_classes, batch_size, input_dims=3, dropout_prob=0.4):
        super(PointNet2SSGCls, self).__init__()
        self.input_dims = input_dims

        self.sa_module1 = SAModule(512, batch_size, 0.2, [input_dims, 64, 64, 128])
        self.sa_module2 = SAModule(128, batch_size, 0.4, [128 + 3, 128, 128, 256])
        self.sa_module3 = SAModule(None, batch_size, None, [256 + 3, 256, 512, 1024],
                                   group_all=True)

        self.mlp1 = nn.Linear(1024, 512)
        self.bn1 = nn.BatchNorm1d(512)
        self.drop1 = nn.Dropout(dropout_prob)

        self.mlp2 = nn.Linear(512, 256)
        self.bn2 = nn.BatchNorm1d(256)
        self.drop2 = nn.Dropout(dropout_prob)

        self.mlp_out = nn.Linear(256, output_classes)

    def forward(self, x):
        if x.shape[-1] > 3:
            pos = x[:, :, :3]
            feat = x[:, :, 3:]
        else:
            pos = x
            feat = None
        pos, feat = self.sa_module1(pos, feat)
        pos, feat = self.sa_module2(pos, feat)
        h = self.sa_module3(pos, feat)

        h = self.mlp1(h)
        h = self.bn1(h)
        h = F.relu(h)
        h = self.drop1(h)
        h = self.mlp2(h)
        h = self.bn2(h)
        h = F.relu(h)
        h = self.drop2(h)

        out = self.mlp_out(h)
        return out

class PointNet2MSGCls(nn.Module):
    def __init__(self, output_classes, batch_size, input_dims=3, dropout_prob=0.4):
        super(PointNet2MSGCls, self).__init__()
        self.input_dims = input_dims

        self.sa_msg_module1 = SAMSGModule(512, batch_size, [0.1, 0.2, 0.4], [16, 32, 128],
                                          [[input_dims, 32, 32, 64], [input_dims, 64, 64, 128],
                                           [input_dims, 64, 96, 128]])
        self.sa_msg_module2 = SAMSGModule(128, batch_size, [0.2, 0.4, 0.8], [32, 64, 128],
                                          [[320 + 3, 64, 64, 128], [320 + 3, 128, 128, 256],
                                           [320 + 3, 128, 128, 256]])
        self.sa_module3 = SAModule(None, batch_size, None, [640 + 3, 256, 512, 1024],
                                   group_all=True)

        self.mlp1 = nn.Linear(1024, 512)
        self.bn1 = nn.BatchNorm1d(512)
        self.drop1 = nn.Dropout(dropout_prob)

        self.mlp2 = nn.Linear(512, 256)
        self.bn2 = nn.BatchNorm1d(256)
        self.drop2 = nn.Dropout(dropout_prob)

        self.mlp_out = nn.Linear(256, output_classes)

    def forward(self, x):
        if x.shape[-1] > 3:
            pos = x[:, :, :3]
            feat = x[:, :, 3:]
        else:
            pos = x
            feat = None
        pos, feat = self.sa_msg_module1(pos, feat)
        pos, feat = self.sa_msg_module2(pos, feat)
        h = self.sa_module3(pos, feat)

        h = self.mlp1(h)
        h = self.bn1(h)
        h = F.relu(h)
        h = self.drop1(h)
        h = self.mlp2(h)
        h = self.bn2(h)
        h = F.relu(h)
        h = self.drop2(h)

        out = self.mlp_out(h)
        return out