citation.py 5.49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import argparse
import time
import numpy as np
import networkx as nx
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.nn.pytorch.conv import GMMConv


class MoNet(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 out_feats,
                 n_layers,
                 dim,
                 n_kernels,
                 dropout):
        super(MoNet, self).__init__()
        self.g = g
        self.layers = nn.ModuleList()
        self.pseudo_proj = nn.ModuleList()

        # Input layer
        self.layers.append(
            GMMConv(in_feats, n_hidden, dim, n_kernels))
        self.pseudo_proj.append(
            nn.Sequential(nn.Linear(2, dim), nn.Tanh()))

        # Hidden layer
        for _ in range(n_layers - 1):
            self.layers.append(GMMConv(n_hidden, n_hidden, dim, n_kernels))
            self.pseudo_proj.append(
                nn.Sequential(nn.Linear(2, dim), nn.Tanh()))

        # Output layer
        self.layers.append(GMMConv(n_hidden, out_feats, dim, n_kernels))
        self.pseudo_proj.append(
            nn.Sequential(nn.Linear(2, dim), nn.Tanh()))
        self.dropout = nn.Dropout(dropout)

    def forward(self, feat, pseudo):
        h = feat
        for i in range(len(self.layers)):
            if i != 0:
                h = self.dropout(h)
            h = self.layers[i](
                self.g, h, self.pseudo_proj[i](pseudo))
        return h

def evaluate(model, features, pseudo, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features, pseudo)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

def main(args):
    # load and preprocess dataset
    data = load_data(args)
68
69
70
    g = data[0]
    if args.gpu < 0:
        cuda = False
71
    else:
72
73
74
75
76
77
78
        cuda = True
        g = g.to(args.gpu)
    features = g.ndata['feat']
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
           train_mask.sum().item(),
           val_mask.sum().item(),
           test_mask.sum().item()))

    # graph preprocess and calculate normalization factor
94
    g = g.remove_self_loop().add_self_loop()
95
    n_edges = g.number_of_edges()
96
97
98
    us, vs = g.edges(order='eid')
    udeg, vdeg = 1 / torch.sqrt(g.in_degrees(us).float()), 1 / torch.sqrt(g.in_degrees(vs).float())
    pseudo = torch.cat([udeg.unsqueeze(1), vdeg.unsqueeze(1)], dim=1)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

    # create GraphSAGE model
    model = MoNet(g,
                  in_feats,
                  args.n_hidden,
                  n_classes,
                  args.n_layers,
                  args.pseudo_dim,
                  args.n_kernels,
                  args.dropout
                  )

    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features, pseudo)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(model, features, pseudo, labels, val_mask)
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
              "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                            acc, n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, pseudo, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='MoNet on citation network')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--pseudo-dim", type=int, default=2,
                        help="Pseudo coordinate dimensions in GMMConv, 2 for cora and 3 for pubmed")
    parser.add_argument("--n-kernels", type=int, default=3,
                        help="Number of kernels in GMMConv layer")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
    args = parser.parse_args()
    print(args)

    main(args)