model.py 7.88 KB
Newer Older
Ziniu Hu's avatar
Ziniu Hu committed
1
2
3
4
5
6
7
8
import dgl
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn

class HGTLayer(nn.Module):
9
10
11
12
13
14
15
16
    def __init__(self,
                 in_dim,
                 out_dim,
                 node_dict,
                 edge_dict,
                 n_heads,
                 dropout = 0.2,
                 use_norm = False):
Ziniu Hu's avatar
Ziniu Hu committed
17
18
19
20
        super(HGTLayer, self).__init__()

        self.in_dim        = in_dim
        self.out_dim       = out_dim
21
22
23
24
25
        self.node_dict     = node_dict
        self.edge_dict     = edge_dict
        self.num_types     = len(node_dict)
        self.num_relations = len(edge_dict)
        self.total_rel     = self.num_types * self.num_relations * self.num_types
Ziniu Hu's avatar
Ziniu Hu committed
26
27
28
29
30
31
32
33
34
35
36
37
        self.n_heads       = n_heads
        self.d_k           = out_dim // n_heads
        self.sqrt_dk       = math.sqrt(self.d_k)
        self.att           = None
        
        self.k_linears   = nn.ModuleList()
        self.q_linears   = nn.ModuleList()
        self.v_linears   = nn.ModuleList()
        self.a_linears   = nn.ModuleList()
        self.norms       = nn.ModuleList()
        self.use_norm    = use_norm
        
38
        for t in range(self.num_types):
Ziniu Hu's avatar
Ziniu Hu committed
39
40
41
42
43
44
45
            self.k_linears.append(nn.Linear(in_dim,   out_dim))
            self.q_linears.append(nn.Linear(in_dim,   out_dim))
            self.v_linears.append(nn.Linear(in_dim,   out_dim))
            self.a_linears.append(nn.Linear(out_dim,  out_dim))
            if use_norm:
                self.norms.append(nn.LayerNorm(out_dim))
            
46
47
48
49
        self.relation_pri   = nn.Parameter(torch.ones(self.num_relations, self.n_heads))
        self.relation_att   = nn.Parameter(torch.Tensor(self.num_relations, n_heads, self.d_k, self.d_k))
        self.relation_msg   = nn.Parameter(torch.Tensor(self.num_relations, n_heads, self.d_k, self.d_k))
        self.skip           = nn.Parameter(torch.ones(self.num_types))
Ziniu Hu's avatar
Ziniu Hu committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        self.drop           = nn.Dropout(dropout)
        
        nn.init.xavier_uniform_(self.relation_att)
        nn.init.xavier_uniform_(self.relation_msg)

    def edge_attention(self, edges):
        etype = edges.data['id'][0]
        
        '''
            Step 1: Heterogeneous Mutual Attention
        '''
        relation_att = self.relation_att[etype]
        relation_pri = self.relation_pri[etype]
        key   = torch.bmm(edges.src['k'].transpose(1,0), relation_att).transpose(1,0)
        att   = (edges.dst['q'] * key).sum(dim=-1) * relation_pri / self.sqrt_dk
        
        '''
            Step 2: Heterogeneous Message Passing
        '''
        relation_msg = self.relation_msg[etype]
        val   = torch.bmm(edges.src['v'].transpose(1,0), relation_msg).transpose(1,0)
        return {'a': att, 'v': val}
    
    def message_func(self, edges):
        return {'v': edges.data['v'], 'a': edges.data['a']}
    
    def reduce_func(self, nodes):
        '''
            Softmax based on target node's id (edge_index_i). 
            NOTE: Using DGL's API, there is a minor difference with this softmax with the original one.
                  This implementation will do softmax only on edges belong to the same relation type, instead of for all of the edges.
        '''
        att = F.softmax(nodes.mailbox['a'], dim=1)
        h   = torch.sum(att.unsqueeze(dim = -1) * nodes.mailbox['v'], dim=1)
        return {'t': h.view(-1, self.out_dim)}
        
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    def forward(self, G, h):
        with G.local_scope():
            node_dict, edge_dict = self.node_dict, self.edge_dict
            for srctype, etype, dsttype in G.canonical_etypes:
                k_linear = self.k_linears[node_dict[srctype]]
                v_linear = self.v_linears[node_dict[srctype]] 
                q_linear = self.q_linears[node_dict[dsttype]]
                
                G.nodes[srctype].data['k'] = k_linear(h[srctype]).view(-1, self.n_heads, self.d_k)
                G.nodes[srctype].data['v'] = v_linear(h[srctype]).view(-1, self.n_heads, self.d_k)
                G.nodes[dsttype].data['q'] = q_linear(h[dsttype]).view(-1, self.n_heads, self.d_k)
                
                G.apply_edges(func=self.edge_attention, etype=etype)
            G.multi_update_all({etype : (self.message_func, self.reduce_func) \
                                for etype in edge_dict}, cross_reducer = 'mean')
            new_h = {}
            for ntype in G.ntypes:
                '''
                    Step 3: Target-specific Aggregation
                    x = norm( W[node_type] * gelu( Agg(x) ) + x )
                '''
                n_id = node_dict[ntype]
                alpha = torch.sigmoid(self.skip[n_id])
                trans_out = self.drop(self.a_linears[n_id](G.nodes[ntype].data['t']))
                trans_out = trans_out * alpha + h[ntype] * (1-alpha)
                if self.use_norm:
                    new_h[ntype] = self.norms[n_id](trans_out)
                else:
                    new_h[ntype] = trans_out
            return new_h
Ziniu Hu's avatar
Ziniu Hu committed
116
117
                
class HGT(nn.Module):
118
    def __init__(self, G, node_dict, edge_dict, n_inp, n_hid, n_out, n_layers, n_heads, use_norm = True):
Ziniu Hu's avatar
Ziniu Hu committed
119
        super(HGT, self).__init__()
120
121
        self.node_dict = node_dict
        self.edge_dict = edge_dict
Ziniu Hu's avatar
Ziniu Hu committed
122
123
124
125
126
127
        self.gcs = nn.ModuleList()
        self.n_inp = n_inp
        self.n_hid = n_hid
        self.n_out = n_out
        self.n_layers = n_layers
        self.adapt_ws  = nn.ModuleList()
128
        for t in range(len(node_dict)):
Ziniu Hu's avatar
Ziniu Hu committed
129
130
            self.adapt_ws.append(nn.Linear(n_inp,   n_hid))
        for _ in range(n_layers):
131
            self.gcs.append(HGTLayer(n_hid, n_hid, node_dict, edge_dict, n_heads, use_norm = use_norm))
Ziniu Hu's avatar
Ziniu Hu committed
132
133
134
        self.out = nn.Linear(n_hid, n_out)

    def forward(self, G, out_key):
135
        h = {}
Ziniu Hu's avatar
Ziniu Hu committed
136
        for ntype in G.ntypes:
137
138
            n_id = self.node_dict[ntype]
            h[ntype] = F.gelu(self.adapt_ws[n_id](G.nodes[ntype].data['inp']))
Ziniu Hu's avatar
Ziniu Hu committed
139
        for i in range(self.n_layers):
140
141
            h = self.gcs[i](G, h)
        return self.out(h[out_key])
Ziniu Hu's avatar
Ziniu Hu committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

class HeteroRGCNLayer(nn.Module):
    def __init__(self, in_size, out_size, etypes):
        super(HeteroRGCNLayer, self).__init__()
        # W_r for each relation
        self.weight = nn.ModuleDict({
                name : nn.Linear(in_size, out_size) for name in etypes
            })

    def forward(self, G, feat_dict):
        # The input is a dictionary of node features for each type
        funcs = {}
        for srctype, etype, dsttype in G.canonical_etypes:
            # Compute W_r * h
            Wh = self.weight[etype](feat_dict[srctype])
            # Save it in graph for message passing
            G.nodes[srctype].data['Wh_%s' % etype] = Wh
            # Specify per-relation message passing functions: (message_func, reduce_func).
            # Note that the results are saved to the same destination feature 'h', which
            # hints the type wise reducer for aggregation.
            funcs[etype] = (fn.copy_u('Wh_%s' % etype, 'm'), fn.mean('m', 'h'))
        # Trigger message passing of multiple types.
        # The first argument is the message passing functions for each relation.
        # The second one is the type wise reducer, could be "sum", "max",
        # "min", "mean", "stack"
        G.multi_update_all(funcs, 'sum')
        # return the updated node feature dictionary
        return {ntype : G.nodes[ntype].data['h'] for ntype in G.ntypes}
    
    
class HeteroRGCN(nn.Module):
    def __init__(self, G, in_size, hidden_size, out_size):
        super(HeteroRGCN, self).__init__()
        # create layers
        self.layer1 = HeteroRGCNLayer(in_size, hidden_size, G.etypes)
        self.layer2 = HeteroRGCNLayer(hidden_size, out_size, G.etypes)

    def forward(self, G, out_key):
        input_dict = {ntype : G.nodes[ntype].data['inp'] for ntype in G.ntypes}
        h_dict = self.layer1(G, input_dict)
        h_dict = {k : F.leaky_relu(h) for k, h in h_dict.items()}
        h_dict = self.layer2(G, h_dict)
        # get paper logits
        return h_dict[out_key]