train.py 5.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
"""
Graph Attention Networks in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.
References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""

import argparse
12
import networkx as nx
13
14
15
16
17
18
19
import time
import mxnet as mx
from mxnet import gluon
import numpy as np
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from gat import GAT
VoVAllen's avatar
VoVAllen committed
20
from utils import EarlyStopping
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

def elu(data):
    return mx.nd.LeakyReLU(data, act_type='elu')


def evaluate(model, features, labels, mask):
    logits = model(features)
    logits = logits[mask].asnumpy().squeeze()
    val_labels = labels[mask].asnumpy().squeeze()
    max_index = np.argmax(logits, axis=1)
    accuracy = np.sum(np.where(max_index == val_labels, 1, 0)) / len(val_labels)
    return accuracy


def main(args):
    # load and preprocess dataset
    data = load_data(args)

    features = mx.nd.array(data.features)
    labels = mx.nd.array(data.labels)
    mask = mx.nd.array(np.where(data.train_mask == 1))
    test_mask = mx.nd.array(np.where(data.test_mask == 1))
    val_mask = mx.nd.array(np.where(data.val_mask == 1))
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()

    if args.gpu < 0:
        ctx = mx.cpu()
    else:
        ctx = mx.gpu(args.gpu)
        features = features.as_in_context(ctx)
        labels = labels.as_in_context(ctx)
        mask = mask.as_in_context(ctx)
        test_mask = test_mask.as_in_context(ctx)
        val_mask = val_mask.as_in_context(ctx)
    # create graph
    g = data.graph
    # add self-loop
60
    g.remove_edges_from(nx.selfloop_edges(g))
61
62
    g = DGLGraph(g)
    g.add_edges(g.nodes(), g.nodes())
63
    g = g.to(ctx)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    # create model
    heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
    model = GAT(g,
                args.num_layers,
                in_feats,
                args.num_hidden,
                n_classes,
                heads,
                elu,
                args.in_drop,
                args.attn_drop,
                args.alpha,
                args.residual)

78
79
    if args.early_stop:
        stopper = EarlyStopping(patience=100)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    model.initialize(ctx=ctx)

    # use optimizer
    trainer = gluon.Trainer(model.collect_params(), 'adam', {'learning_rate': args.lr})

    dur = []
    for epoch in range(args.epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            logits = model(features)
            loss = mx.nd.softmax_cross_entropy(logits[mask].squeeze(), labels[mask].squeeze())
            loss.backward()
        trainer.step(mask.shape[0])

        if epoch >= 3:
            dur.append(time.time() - t0)
        print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}".format(
            epoch, loss.asnumpy()[0], np.mean(dur), n_edges / np.mean(dur) / 1000))
VoVAllen's avatar
VoVAllen committed
100
101
        val_accuracy = evaluate(model, features, labels, val_mask)
        print("Validation Accuracy {:.4f}".format(val_accuracy))
102
103
104
105
106
107
108
        if args.early_stop:
            if stopper.step(val_accuracy, model): 
                break
    print()

    if args.early_stop:
        model.load_parameters('model.param')
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    test_accuracy = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(test_accuracy))


if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='GAT')
    register_data_args(parser)
    parser.add_argument("--gpu", type=int, default=-1,
                        help="which GPU to use. Set -1 to use CPU.")
    parser.add_argument("--epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--num-heads", type=int, default=8,
                        help="number of hidden attention heads")
    parser.add_argument("--num-out-heads", type=int, default=1,
                        help="number of output attention heads")
    parser.add_argument("--num-layers", type=int, default=1,
                        help="number of hidden layers")
    parser.add_argument("--num-hidden", type=int, default=8,
                        help="number of hidden units")
    parser.add_argument("--residual", action="store_true", default=False,
                        help="use residual connection")
    parser.add_argument("--in-drop", type=float, default=.6,
                        help="input feature dropout")
    parser.add_argument("--attn-drop", type=float, default=.6,
                        help="attention dropout")
    parser.add_argument("--lr", type=float, default=0.005,
                        help="learning rate")
    parser.add_argument('--weight-decay', type=float, default=5e-4,
                        help="weight decay")
    parser.add_argument('--alpha', type=float, default=0.2,
                        help="the negative slop of leaky relu")
141
142
    parser.add_argument('--early-stop', action='store_true', default=False,
                        help="indicates whether to use early stop or not")
143
144
145
146
    args = parser.parse_args()
    print(args)

    main(args)