hetero_rgcn.py 16.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import argparse
import itertools
from tqdm import tqdm

import dgl
import dgl.nn as dglnn
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from ogb.nodeproppred import DglNodePropPredDataset, Evaluator


def extract_embed(node_embed, input_nodes):
    emb = {}
    for ntype, nid in input_nodes.items():
        nid = input_nodes[ntype]
        if ntype in node_embed:
            emb[ntype] = node_embed[ntype][nid]
    return emb

class RelGraphEmbed(nn.Module):
    r"""Embedding layer for featureless heterograph.
    
    Parameters
    ----------
    g : DGLGraph
        Input graph.
    embed_size : int
        The length of each embedding vector
    exclude : list[str]
        The list of node-types to exclude (e.g., because they have natural features)
    """
    def __init__(self, g, embed_size, exclude=list()):
        
        super(RelGraphEmbed, self).__init__()
        self.g = g
        self.embed_size = embed_size

        # create learnable embeddings for all nodes, except those with a node-type in the "exclude" list
        self.embeds = nn.ParameterDict()
        for ntype in g.ntypes:
            if ntype in exclude:
                continue
            embed = nn.Parameter(th.Tensor(g.number_of_nodes(ntype), self.embed_size))
            self.embeds[ntype] = embed

        self.reset_parameters()

    def reset_parameters(self):
        for emb in self.embeds.values():
            nn.init.xavier_uniform_(emb)

    def forward(self, block=None):
        return self.embeds


class RelGraphConvLayer(nn.Module):
    r"""Relational graph convolution layer.

    Parameters
    ----------
    in_feat : int
        Input feature size.
    out_feat : int
        Output feature size.
    ntypes : list[str]
        Node type names
    rel_names : list[str]
        Relation names.
    weight : bool, optional
        True if a linear layer is applied after message passing. Default: True
    bias : bool, optional
        True if bias is added. Default: True
    activation : callable, optional
        Activation function. Default: None
    self_loop : bool, optional
        True to include self loop message. Default: False
    dropout : float, optional
        Dropout rate. Default: 0.0
    """
    def __init__(self,
                 in_feat,
                 out_feat,
                 ntypes,
                 rel_names,
                 *,
                 weight=True,
                 bias=True,
                 activation=None,
                 self_loop=False,
                 dropout=0.0):
        super(RelGraphConvLayer, self).__init__()
        self.in_feat = in_feat
        self.out_feat = out_feat
        self.ntypes = ntypes
        self.rel_names = rel_names
        self.bias = bias
        self.activation = activation
        self.self_loop = self_loop

        self.conv = dglnn.HeteroGraphConv({
                rel : dglnn.GraphConv(in_feat, out_feat, norm='right', weight=False, bias=False)
                for rel in rel_names
            })

        self.use_weight = weight
        if self.use_weight:
            self.weight = nn.ModuleDict({
                rel_name: nn.Linear(in_feat, out_feat, bias=False)
                for rel_name in self.rel_names
            })

        # weight for self loop
        if self.self_loop:
            self.loop_weights = nn.ModuleDict({
                ntype: nn.Linear(in_feat, out_feat, bias=bias)
                for ntype in self.ntypes
            })

        self.dropout = nn.Dropout(dropout)

        self.reset_parameters()

    
    def reset_parameters(self):
        if self.use_weight:
            for layer in self.weight.values():
                layer.reset_parameters()

        if self.self_loop:
            for layer in self.loop_weights.values():
                layer.reset_parameters()

    def forward(self, g, inputs):
        """Forward computation

        Parameters
        ----------
        g : DGLHeteroGraph
            Input graph.
        inputs : dict[str, torch.Tensor]
            Node feature for each node type.

        Returns
        -------
        dict[str, torch.Tensor]
            New node features for each node type.
        """
        g = g.local_var()
        if self.use_weight:
            wdict = {rel_name: {'weight': self.weight[rel_name].weight.T}
                     for rel_name in self.rel_names}
        else:
            wdict = {}

        if g.is_block:
            inputs_dst = {k: v[:g.number_of_dst_nodes(k)] for k, v in inputs.items()}
        else:
            inputs_dst = inputs

        hs = self.conv(g, inputs, mod_kwargs=wdict)

        def _apply(ntype, h):
            if self.self_loop:
                h = h + self.loop_weights[ntype](inputs_dst[ntype])
            if self.activation:
                h = self.activation(h)
            return self.dropout(h)
        return {ntype : _apply(ntype, h) for ntype, h in hs.items()}


class EntityClassify(nn.Module):
    r"""
    R-GCN node classification model

    Parameters
    ----------
    g : DGLGraph
        The heterogenous graph used for message passing
    in_dim : int
        Input feature size.
    h_dim : int
        Hidden dimension size.
    out_dim : int
        Output dimension size.
    num_hidden_layers : int, optional
        Number of RelGraphConvLayers. Default: 1
    dropout : float, optional
        Dropout rate. Default: 0.0
    use_self_loop : bool, optional
        True to include self loop message in RelGraphConvLayers. Default: True
    """
    def __init__(self,
                 g, in_dim,
                 h_dim, out_dim,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=True):
        super(EntityClassify, self).__init__()
        self.g = g
        self.in_dim = in_dim
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.rel_names = list(set(g.etypes))
        self.rel_names.sort()
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop

        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(RelGraphConvLayer(
            self.in_dim, self.h_dim, g.ntypes, self.rel_names,
            activation=F.relu, self_loop=self.use_self_loop,
            dropout=self.dropout))
        # h2h
        for _ in range(self.num_hidden_layers):
            self.layers.append(RelGraphConvLayer(
                self.h_dim, self.h_dim, g.ntypes, self.rel_names,
                activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout))
        # h2o
        self.layers.append(RelGraphConvLayer(
            self.h_dim, self.out_dim, g.ntypes, self.rel_names,
            activation=None,
            self_loop=self.use_self_loop))

    def reset_parameters(self):
        for layer in self.layers:
            layer.reset_parameters()

    def forward(self, h, blocks):
        for layer, block in zip(self.layers, blocks):
            h = layer(block, h)
        return h


class Logger(object):
    r"""
    This class was taken directly from the PyG implementation and can be found
    here: https://github.com/snap-stanford/ogb/blob/master/examples/nodeproppred/mag/logger.py

    This was done to ensure that performance was measured in precisely the same way
    """
    def __init__(self, runs, info=None):
        self.info = info
        self.results = [[] for _ in range(runs)]

    def add_result(self, run, result):
        assert len(result) == 3
        assert run >= 0 and run < len(self.results)
        self.results[run].append(result)

    def print_statistics(self, run=None):
        if run is not None:
            result = 100 * th.tensor(self.results[run])
            argmax = result[:, 1].argmax().item()
            print(f'Run {run + 1:02d}:')
            print(f'Highest Train: {result[:, 0].max():.2f}')
            print(f'Highest Valid: {result[:, 1].max():.2f}')
            print(f'  Final Train: {result[argmax, 0]:.2f}')
            print(f'   Final Test: {result[argmax, 2]:.2f}')
        else:
            result = 100 * th.tensor(self.results)

            best_results = []
            for r in result:
                train1 = r[:, 0].max().item()
                valid = r[:, 1].max().item()
                train2 = r[r[:, 1].argmax(), 0].item()
                test = r[r[:, 1].argmax(), 2].item()
                best_results.append((train1, valid, train2, test))

            best_result = th.tensor(best_results)

            print(f'All runs:')
            r = best_result[:, 0]
            print(f'Highest Train: {r.mean():.2f} ± {r.std():.2f}')
            r = best_result[:, 1]
            print(f'Highest Valid: {r.mean():.2f} ± {r.std():.2f}')
            r = best_result[:, 2]
            print(f'  Final Train: {r.mean():.2f} ± {r.std():.2f}')
            r = best_result[:, 3]
            print(f'   Final Test: {r.mean():.2f} ± {r.std():.2f}')


def parse_args():
    # DGL
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0.5,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=64,
            help="number of hidden units")
    parser.add_argument("--lr", type=float, default=0.01,
            help="learning rate")
    parser.add_argument("-e", "--n-epochs", type=int, default=3,
            help="number of training epochs")

    # OGB
    parser.add_argument('--runs', type=int, default=10)

    args = parser.parse_args()
    return args

def prepare_data(args):
    dataset = DglNodePropPredDataset(name="ogbn-mag")
    split_idx = dataset.get_idx_split()
    g, labels = dataset[0] # graph: dgl graph object, label: torch tensor of shape (num_nodes, num_tasks)
    labels = labels['paper'].flatten()

    def add_reverse_hetero(g, combine_like=True):
        r"""
        Parameters
        ----------
        g : DGLGraph
            The heterogenous graph where reverse edges should be added
        combine_like : bool, optional
            Whether reverse-edges that have identical source/destination 
            node types should be combined with the existing edge-type, 
            rather than creating a new edge type.  Default: True.
        """
        relations = {}
        num_nodes_dict = {ntype: g.num_nodes(ntype) for ntype in g.ntypes}
        for metapath in g.canonical_etypes:
            src_ntype, rel_type, dst_ntype = metapath
            src, dst = g.all_edges(etype=rel_type)

            if src_ntype==dst_ntype and combine_like:
                # Make edges un-directed instead of making a reverse edge type
                relations[metapath] = (th.cat([src, dst], dim=0), th.cat([dst, src], dim=0))
            else:
                # Original edges
                relations[metapath] = (src, dst)

                reverse_metapath = (dst_ntype, 'rev-' + rel_type, src_ntype)
                relations[reverse_metapath] = (dst, src)           # Reverse edges

        new_g = dgl.heterograph(relations, num_nodes_dict=num_nodes_dict)
        # Remove duplicate edges
        new_g = dgl.to_simple(new_g, return_counts=None, writeback_mapping=False, copy_ndata=True)

        # copy_ndata:
        for ntype in g.ntypes:
            for k, v in g.nodes[ntype].data.items():
                new_g.nodes[ntype].data[k] = v.detach().clone()

        return new_g

    g = add_reverse_hetero(g)
    print("Loaded graph: {}".format(g))

    logger = Logger(args['runs'], args)

    # train sampler
    sampler = dgl.dataloading.MultiLayerNeighborSampler(args['fanout'])
    train_loader = dgl.dataloading.NodeDataLoader(
        g, split_idx['train'], sampler,
        batch_size=args['batch_size'], shuffle=True, num_workers=0)
    
    return (g, labels, dataset.num_classes, split_idx,  
            logger, train_loader)

def get_model(g, num_classes, args):
    embed_layer = RelGraphEmbed(g, 128, exclude=['paper'])
    
    model = EntityClassify(
        g, 128, args['n_hidden'], num_classes,
        num_hidden_layers=args['num_layers'] - 2,
        dropout=args['dropout'],
        use_self_loop=True,
    )

    print(embed_layer)
    print(f"Number of embedding parameters: {sum(p.numel() for p in embed_layer.parameters())}")
    print(model)
    print(f"Number of model parameters: {sum(p.numel() for p in model.parameters())}")

    return embed_layer, model

def train(g, model, node_embed, optimizer, train_loader, split_idx,  
          labels, logger, device, run, args):
    
    # training loop
    print("start training...")
    category = 'paper'

    for epoch in range(args['n_epochs']):
        N_train= split_idx['train'][category].shape[0]
        pbar = tqdm(total=N_train)
        pbar.set_description(f'Epoch {epoch:02d}')
        model.train()
        
        total_loss = 0

        for input_nodes, seeds, blocks in train_loader:
            blocks = [blk.to(device) for blk in blocks]
            seeds = seeds[category]     # we only predict the nodes with type "category"
            batch_size = seeds.shape[0]

            emb = extract_embed(node_embed, input_nodes)
            # Add the batch's raw "paper" features
            emb.update({'paper': g.ndata['feat']['paper'][input_nodes['paper']]})
            lbl = labels[seeds]
            
            if th.cuda.is_available():
                emb = {k : e.cuda() for k, e in emb.items()}
                lbl = lbl.cuda()
            
            optimizer.zero_grad()
            logits = model(emb, blocks)[category]
            
            y_hat = logits.log_softmax(dim=-1)
            loss = F.nll_loss(y_hat, lbl)
            loss.backward()
            optimizer.step()
            
            total_loss += loss.item() * batch_size
            pbar.update(batch_size)
        
        pbar.close()
        loss = total_loss / N_train
        
        result = test(g, model, node_embed, labels, device, split_idx, args)
        logger.add_result(run, result)
        train_acc, valid_acc, test_acc = result
        print(f'Run: {run + 1:02d}, '
              f'Epoch: {epoch +1 :02d}, '
              f'Loss: {loss:.4f}, '
              f'Train: {100 * train_acc:.2f}%, '
              f'Valid: {100 * valid_acc:.2f}%, '
              f'Test: {100 * test_acc:.2f}%')
    
    return logger

@th.no_grad()
def test(g, model, node_embed, y_true, device, split_idx, args):
    model.eval()
    category = 'paper'
    evaluator = Evaluator(name='ogbn-mag')

    sampler = dgl.dataloading.MultiLayerFullNeighborSampler(args['num_layers'])
    loader = dgl.dataloading.NodeDataLoader(
        g, {'paper': th.arange(g.num_nodes('paper'))}, sampler,
        batch_size=16384, shuffle=False, num_workers=0)
    
    N = y_true.size(0)
    pbar = tqdm(total=N)
    pbar.set_description(f'Full Inference')
    
    y_hats = list()

    for input_nodes, seeds, blocks in loader:
        blocks = [blk.to(device) for blk in blocks]
        seeds = seeds[category]     # we only predict the nodes with type "category"
        batch_size = seeds.shape[0]

        emb = extract_embed(node_embed, input_nodes)
        # Get the batch's raw "paper" features
        emb.update({'paper': g.ndata['feat']['paper'][input_nodes['paper']]})
        
        if th.cuda.is_available():
            emb = {k : e.cuda() for k, e in emb.items()}
        
        logits = model(emb, blocks)[category]
        y_hat = logits.log_softmax(dim=-1).argmax(dim=1, keepdims=True)
        y_hats.append(y_hat.cpu())
        
        pbar.update(batch_size)
    
    pbar.close()

    y_pred = th.cat(y_hats, dim=0)
    y_true = th.unsqueeze(y_true, 1)

    train_acc = evaluator.eval({
        'y_true': y_true[split_idx['train']['paper']],
        'y_pred': y_pred[split_idx['train']['paper']],
    })['acc']
    valid_acc = evaluator.eval({
        'y_true': y_true[split_idx['valid']['paper']],
        'y_pred': y_pred[split_idx['valid']['paper']],
    })['acc']
    test_acc = evaluator.eval({
        'y_true': y_true[split_idx['test']['paper']],
        'y_pred': y_pred[split_idx['test']['paper']],
    })['acc']

    return train_acc, valid_acc, test_acc

def main(args):
    # Static parameters
    hyperparameters = dict(
        num_layers=2,
        fanout=[25, 20], 
        batch_size=1024,
    )
    hyperparameters.update(vars(args))
    print(hyperparameters)

    device = f'cuda:0' if th.cuda.is_available() else 'cpu'

    (g, labels, num_classes, split_idx, 
        logger, train_loader) = prepare_data(hyperparameters)

    embed_layer, model = get_model(g, num_classes, hyperparameters)
    model = model.to(device)
    
    for run in range(hyperparameters['runs']):

        embed_layer.reset_parameters()
        model.reset_parameters()

        # optimizer
        all_params = itertools.chain(model.parameters(), embed_layer.parameters())
        optimizer = th.optim.Adam(all_params, lr=hyperparameters['lr'])

        logger = train(g, model, embed_layer(), optimizer, train_loader, split_idx,
              labels, logger, device, run, hyperparameters)

        logger.print_statistics(run)
    
    print("Final performance: ")
    logger.print_statistics()

if __name__ == '__main__':
    args = parse_args()
    main(args)