test.py 4.54 KB
Newer Older
ziqiaomeng's avatar
ziqiaomeng committed
1
2
3
4
5
6
7
8
9
10
11
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import f1_score


if __name__ == "__main__":   
    venue_count = 133
    author_count = 246678
    experiment_times = 1
    percent = 0.05
    file = open(".../output_file_path/...")
12
    file_1 = open(".../label 2/googlescholar.8area.venue.label.txt")
ziqiaomeng's avatar
ziqiaomeng committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    file_2 = open(".../label 2/googlescholar.8area.author.label.txt")
    check_venue = {}
    check_author = {}
    for line in file_1:
        venue_label = line.strip().split(" ")
        check_venue[venue_label[0]] = int(venue_label[1])
    for line in file_2:
        author_label = line.strip().split(" ")
        check_author[author_label[0]] = int(author_label[1])
    venue_embed_dict = {}
    author_embed_dict = {}
    # collect embeddings separately in dictionary form
    file.readline()
    print("read line by line")
    for line in file:
        embed = line.strip().split(' ')
        if embed[0] in check_venue:
            venue_embed_dict[embed[0]] = []
            for i in range(1, len(embed), 1):
                venue_embed_dict[embed[0]].append(float(embed[i]))
        if embed[0] in check_author:
            author_embed_dict[embed[0]] = []
            for j in range(1, len(embed), 1):
                author_embed_dict[embed[0]].append(float(embed[j]))
    #get venue embeddings
    print("reading finished")
    venues = list(venue_embed_dict.keys())
    authors = list(author_embed_dict.keys())
    macro_average_venue = 0
    micro_average_venue = 0
    macro_average_author = 0
    micro_average_author = 0
    for time in range(experiment_times):
        print("one more time")
        np.random.shuffle(venues)
        np.random.shuffle(authors)
        venue_embedding = np.array([])
        author_embedding = np.array([])
        print("collecting venue embeddings")
        for venue in venues:
            temp = np.array(venue_embed_dict[venue])
            if len(venue_embedding) == 0:
                venue_embedding = temp
            else:
                venue_embedding = np.vstack((venue_embedding, temp))
        print("collecting author embeddings")
        count = 0
        for author in authors:
            count += 1
62
            # print("one more author " + str(count))
ziqiaomeng's avatar
ziqiaomeng committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
            temp_1 = np.array(author_embed_dict[author])
            if len(author_embedding) == 0:
                author_embedding = temp_1
            else:
                author_embedding = np.vstack((author_embedding, temp_1))
        # split data into training and testing
        print("splitting")
        venue_split = int(venue_count * percent)
        venue_training = venue_embedding[:venue_split,:]
        venue_testing = venue_embedding[venue_split:,:]
        author_split = int(author_count * percent)
        author_training = author_embedding[:author_split,:]
        author_testing = author_embedding[author_split:,:]
        # split label into training and testing
        venue_label = []
        venue_true = []
        author_label = []
        author_true = []
        for i in range(len(venues)):
            if i < venue_split:
                venue_label.append(check_venue[venues[i]])
            else:
                venue_true.append(check_venue[venues[i]])
        venue_label = np.array(venue_label)
        venue_true = np.array(venue_true)
        for j in range(len(authors)):
            if j < author_split:
                author_label.append(check_author[authors[j]])
            else:
                author_true.append(check_author[authors[j]])
        author_label = np.array(author_label)
        author_true = np.array(author_true)
        file.close()
        print("beging predicting")
        clf_venue = LogisticRegression(random_state=0, solver="lbfgs", multi_class="multinomial").fit(venue_training,venue_label)
        y_pred_venue = clf_venue.predict(venue_testing)
        clf_author = LogisticRegression(random_state=0, solver="lbfgs", multi_class="multinomial").fit(author_training,author_label)
        y_pred_author = clf_author.predict(author_testing)
        macro_average_venue += f1_score(venue_true, y_pred_venue, average="macro")
        micro_average_venue += f1_score(venue_true, y_pred_venue, average="micro")
        macro_average_author += f1_score(author_true, y_pred_author, average="macro")
        micro_average_author += f1_score(author_true, y_pred_author, average="micro")
    print(macro_average_venue/float(experiment_times))
    print(micro_average_venue/float(experiment_times))
    print(macro_average_author / float(experiment_times))
    print(micro_average_author / float(experiment_times))