helper.py 4.91 KB
Newer Older
esang's avatar
esang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
from dgl.geometry import farthest_point_sampler

'''
Part of the code are adapted from
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
'''


def square_distance(src, dst):
    '''
    Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
    '''
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist


def index_points(points, idx):
    '''
    Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
    '''
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    view_shape[1:] = [1] * (len(view_shape) - 1)
    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(
        device).view(view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points


class KNearNeighbors(nn.Module):
    '''
    Find the k nearest neighbors
    '''

    def __init__(self, n_neighbor):
        super(KNearNeighbors, self).__init__()
        self.n_neighbor = n_neighbor

    def forward(self, pos, centroids):
        '''
        Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
        '''
        center_pos = index_points(pos, centroids)
        sqrdists = square_distance(center_pos, pos)
        group_idx = sqrdists.argsort(dim=-1)[:, :, :self.n_neighbor]
        return group_idx


class KNNGraphBuilder(nn.Module):
    '''
    Build NN graph
    '''

    def __init__(self, n_neighbor):
        super(KNNGraphBuilder, self).__init__()
        self.n_neighbor = n_neighbor
        self.knn = KNearNeighbors(n_neighbor)

    def forward(self, pos, centroids, feat=None):
        dev = pos.device
        group_idx = self.knn(pos, centroids)
        B, N, _ = pos.shape
        glist = []
        for i in range(B):
            center = torch.zeros((N)).to(dev)
            center[centroids[i]] = 1
            src = group_idx[i].contiguous().view(-1)
            dst = centroids[i].view(-1, 1).repeat(1, min(self.n_neighbor,
                                                         src.shape[0] // centroids.shape[1])).view(-1)

            unified = torch.cat([src, dst])
            uniq, inv_idx = torch.unique(unified, return_inverse=True)
            src_idx = inv_idx[:src.shape[0]]
            dst_idx = inv_idx[src.shape[0]:]

            g = dgl.graph((src_idx, dst_idx))
            g.ndata['pos'] = pos[i][uniq]
            g.ndata['center'] = center[uniq]
            if feat is not None:
                g.ndata['feat'] = feat[i][uniq]
            glist.append(g)
        bg = dgl.batch(glist)
        return bg


class KNNMessage(nn.Module):
    '''
    Compute the input feature from neighbors
    '''

    def __init__(self, n_neighbor):
        super(KNNMessage, self).__init__()
        self.n_neighbor = n_neighbor

    def forward(self, edges):
        norm = edges.src['feat'] - edges.dst['feat']
        if 'feat' in edges.src:
            res = torch.cat([norm, edges.src['feat']], 1)
        else:
            res = norm
        return {'agg_feat': res}


class KNNConv(nn.Module):
    '''
    Feature aggregation
    '''

    def __init__(self, sizes):
        super(KNNConv, self).__init__()
        self.conv = nn.ModuleList()
        self.bn = nn.ModuleList()
        for i in range(1, len(sizes)):
            self.conv.append(nn.Conv2d(sizes[i-1], sizes[i], 1))
            self.bn.append(nn.BatchNorm2d(sizes[i]))

    def forward(self, nodes):
        shape = nodes.mailbox['agg_feat'].shape
        h = nodes.mailbox['agg_feat'].view(
            shape[0], -1, shape[1], shape[2]).permute(0, 3, 2, 1)
        for conv, bn in zip(self.conv, self.bn):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)
        h = torch.max(h, 2)[0]
        feat_dim = h.shape[1]
        h = h.permute(0, 2, 1).reshape(-1, feat_dim)
        return {'new_feat': h}


class TransitionDown(nn.Module):
    """
    The Transition Down Module
    """

    def __init__(self, in_channels, out_channels, n_neighbor=64):
        super(TransitionDown, self).__init__()
        self.frnn_graph = KNNGraphBuilder(n_neighbor)
        self.message = KNNMessage(n_neighbor)
        self.conv = KNNConv([in_channels, out_channels, out_channels])

    def forward(self, pos, feat, n_point):
        batch_size = pos.shape[0]
        centroids = farthest_point_sampler(pos, n_point)
        g = self.frnn_graph(pos, centroids, feat)
        g.update_all(self.message, self.conv)

        mask = g.ndata['center'] == 1
        pos_dim = g.ndata['pos'].shape[-1]
        feat_dim = g.ndata['new_feat'].shape[-1]
        pos_res = g.ndata['pos'][mask].view(batch_size, -1, pos_dim)
        feat_res = g.ndata['new_feat'][mask].view(
            batch_size, -1, feat_dim)
        return pos_res, feat_res