1_graph_classification.py 8.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
Single Machine Multi-GPU Minibatch Graph Classification
=======================================================

In this tutorial, you will learn how to use multiple GPUs in training a
graph neural network (GNN) for graph classification. This tutorial assumes
knowledge in GNNs for graph classification and we recommend you to check
:doc:`Training a GNN for Graph Classification <../blitz/5_graph_classification>` otherwise.

(Time estimate: 8 minutes)

To use a single GPU in training a GNN, we need to put the model, graph(s), and other
tensors (e.g. labels) on the same GPU:

15
.. code:: python
16

17
    import torch
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    # Use the first GPU
    device = torch.device("cuda:0")
    model = model.to(device)
    graph = graph.to(device)
    labels = labels.to(device)

The node and edge features in the graphs, if any, will also be on the GPU.
After that, the forward computation, backward computation and parameter
update will take place on the GPU. For graph classification, this repeats
for each minibatch gradient descent.

Using multiple GPUs allows performing more computation per unit of time. It
is like having a team work together, where each GPU is a team member. We need
to distribute the computation workload across GPUs and let them synchronize
the efforts regularly. PyTorch provides convenient APIs for this task with
multiple processes, one per GPU, and we can use them in conjunction with DGL.

Intuitively, we can distribute the workload along the dimension of data. This
allows multiple GPUs to perform the forward and backward computation of
multiple gradient descents in parallel. To distribute a dataset across
multiple GPUs, we need to partition it into multiple mutually exclusive
subsets of a similar size, one per GPU. We need to repeat the random
partition every epoch to guarantee randomness. We can use
:func:`~dgl.dataloading.pytorch.GraphDataLoader`, which wraps some PyTorch 
APIs and does the job for graph classification in data loading.

Once all GPUs have finished the backward computation for its minibatch,
we need to synchronize the model parameter update across them. Specifically,
this involves collecting gradients from all GPUs, averaging them and updating
the model parameters on each GPU. We can wrap a PyTorch model with
:func:`~torch.nn.parallel.DistributedDataParallel` so that the model
parameter update will invoke gradient synchronization first under the hood.

.. image:: https://data.dgl.ai/tutorial/mgpu_gc.png
  :width: 450px
  :align: center

That’s the core behind this tutorial. We will explore it more in detail with
a complete example below.

.. note::

   See `this tutorial <https://pytorch.org/tutorials/intermediate/ddp_tutorial.html>`__
   from PyTorch for general multi-GPU training with ``DistributedDataParallel``.

Distributed Process Group Initialization
----------------------------------------

For communication between multiple processes in multi-gpu training, we need
to start the distributed backend at the beginning of each process. We use
`world_size` to refer to the number of processes and `rank` to refer to the
process ID, which should be an integer from `0` to `world_size - 1`.
""" 
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

import torch.distributed as dist

def init_process_group(world_size, rank):
    dist.init_process_group(
        backend='nccl',
        init_method='tcp://127.0.0.1:12345',
        world_size=world_size,
        rank=rank)

###############################################################################
# Data Loader Preparation
# -----------------------
#
# We split the dataset into training, validation and test subsets. In dataset
# splitting, we need to use a same random seed across processes to ensure a
# same split. We follow the common practice to train with multiple GPUs and
# evaluate with a single GPU, thus only set `use_ddp` to True in the
# :func:`~dgl.dataloading.pytorch.GraphDataLoader` for the training set, where 
# `ddp` stands for :func:`~torch.nn.parallel.DistributedDataParallel`.
#

from dgl.data import split_dataset
from dgl.dataloading import GraphDataLoader

def get_dataloaders(dataset, seed, batch_size=32):
    # Use a 80:10:10 train-val-test split
    train_set, val_set, test_set = split_dataset(dataset,
                                                 frac_list=[0.8, 0.1, 0.1],
                                                 shuffle=True,
                                                 random_state=seed)
    train_loader = GraphDataLoader(train_set, use_ddp=True, batch_size=batch_size, shuffle=True)
    val_loader = GraphDataLoader(val_set, batch_size=batch_size)
    test_loader = GraphDataLoader(test_set, batch_size=batch_size)

    return train_loader, val_loader, test_loader

###############################################################################
# Model Initialization
# --------------------
#
# For this tutorial, we use a simplified Graph Isomorphism Network (GIN).
#

import torch.nn as nn
import torch.nn.functional as F
from dgl.nn.pytorch import GINConv, SumPooling

class GIN(nn.Module):
    def __init__(self, input_size=1, num_classes=2):
        super(GIN, self).__init__()

        self.conv1 = GINConv(nn.Linear(input_size, num_classes), aggregator_type='sum')
        self.conv2 = GINConv(nn.Linear(num_classes, num_classes), aggregator_type='sum')
        self.pool = SumPooling()

    def forward(self, g, feats):
        feats = self.conv1(g, feats)
        feats = F.relu(feats)
        feats = self.conv2(g, feats)

        return self.pool(g, feats)

###############################################################################
# To ensure same initial model parameters across processes, we need to set the
# same random seed before model initialization. Once we construct a model
# instance, we wrap it with :func:`~torch.nn.parallel.DistributedDataParallel`.
#

import torch
from torch.nn.parallel import DistributedDataParallel

def init_model(seed, device):
    torch.manual_seed(seed)
    model = GIN().to(device)
    model = DistributedDataParallel(model, device_ids=[device], output_device=device)

    return model

###############################################################################
# Main Function for Each Process
# -----------------------------
#
# Define the model evaluation function as in the single-GPU setting.
#

def evaluate(model, dataloader, device):
    model.eval()

    total = 0
    total_correct = 0

    for bg, labels in dataloader:
        bg = bg.to(device)
        labels = labels.to(device)
        # Get input node features
        feats = bg.ndata.pop('attr')
        with torch.no_grad():
            pred = model(bg, feats)
        _, pred = torch.max(pred, 1)
        total += len(labels)
        total_correct += (pred == labels).sum().cpu().item()

    return 1.0 * total_correct / total

###############################################################################
# Define the main function for each process.
#

from torch.optim import Adam

def main(rank, world_size, dataset, seed=0):
    init_process_group(world_size, rank)
    # Assume the GPU ID to be the same as the process ID
    device = torch.device('cuda:{:d}'.format(rank))
    torch.cuda.set_device(device)

    model = init_model(seed, device)
    criterion = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=0.01)

    train_loader, val_loader, test_loader = get_dataloaders(dataset,
194
                                                            seed)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    for epoch in range(5):
        model.train()
        # The line below ensures all processes use a different
        # random ordering in data loading for each epoch.
        train_loader.set_epoch(epoch)

        total_loss = 0
        for bg, labels in train_loader:
            bg = bg.to(device)
            labels = labels.to(device)
            feats = bg.ndata.pop('attr')
            pred = model(bg, feats)

            loss = criterion(pred, labels)
            total_loss += loss.cpu().item()
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        loss = total_loss
        print('Loss: {:.4f}'.format(loss))

        val_acc = evaluate(model, val_loader, device)
        print('Val acc: {:.4f}'.format(val_acc))

    test_acc = evaluate(model, test_loader, device)
    print('Test acc: {:.4f}'.format(test_acc))
    dist.destroy_process_group()

###############################################################################
# Finally we load the dataset and launch the processes.
225
226
227
228
229
230
231
# 
# .. note::
# 
#    You will need to use ``dgl.multiprocessing`` instead of the Python
#    ``multiprocessing`` package. ``dgl.multiprocessing`` is identical to
#    Python’s built-in ``multiprocessing`` except that it handles the
#    subtleties between forking and multithreading in Python.
232
233
234
#

if __name__ == '__main__':
235
    import dgl.multiprocessing as mp
236
237
238
239
240
241
242
243
244
245
246
247

    from dgl.data import GINDataset

    num_gpus = 4
    procs = []
    dataset = GINDataset(name='IMDBBINARY', self_loop=False)
    for rank in range(num_gpus):
        p = mp.Process(target=main, args=(rank, num_gpus, dataset))
        p.start()
        procs.append(p)
    for p in procs:
        p.join()