main.py 5.93 KB
Newer Older
KounianhuaDu's avatar
KounianhuaDu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch 
import torch.nn as nn
import torch.optim as optim
import dgl
import numpy as np
import pickle as pkl
import argparse
from data_loader import load_data
from TAHIN import TAHIN
from utils import evaluate_auc, evaluate_acc, evaluate_f1_score, evaluate_logloss

def main(args):
    #step 1: Check device
    if args.gpu >= 0 and torch.cuda.is_available():
        device = 'cuda:{}'.format(args.gpu)
    else:
        device = 'cpu'

    #step 2: Load data 
    g, train_loader, eval_loader, test_loader, meta_paths, user_key, item_key = load_data(args.dataset, args.batch, args.num_workers, args.path)
    g = g.to(device)
    print('Data loaded.')

    #step 3: Create model and training components
    model = TAHIN(
        g, meta_paths, args.in_size, args.out_size, args.num_heads, args.dropout
        )
    model = model.to(device)
    criterion = nn.BCELoss()
    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
    print('Model created.')

    #step 4: Training
    print('Start training.')
    best_acc = 0.0
    kill_cnt = 0
    for epoch in range(args.epochs):
        # Training and validation using a full graph
        model.train()
        train_loss = []
        for step, batch in enumerate(train_loader):
            user, item, label = [_.to(device) for _ in batch]
            logits = model.forward(g, user_key, item_key, user, item)

            # compute loss
            tr_loss = criterion(logits, label)
            train_loss.append(tr_loss)

            # backward
            optimizer.zero_grad()
            tr_loss.backward()
            optimizer.step()

54
        train_loss = torch.stack(train_loss).sum().cpu().item()
KounianhuaDu's avatar
KounianhuaDu committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68

        model.eval()
        with torch.no_grad():
            validate_loss = []
            validate_acc = []
            for step, batch in enumerate(eval_loader):
                user, item, label = [_.to(device) for _ in batch]
                logits = model.forward(g, user_key, item_key, user, item)

                # compute loss
                val_loss = criterion(logits, label)
                val_acc = evaluate_acc(logits.detach().cpu().numpy(), label.detach().cpu().numpy())
                validate_loss.append(val_loss)
                validate_acc.append(val_acc)
69
70

            validate_loss = torch.stack(validate_loss).sum().cpu().item()
KounianhuaDu's avatar
KounianhuaDu committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
            validate_acc = np.mean(validate_acc)
        
            #validate
            if validate_acc > best_acc:
                best_acc = validate_acc
                best_epoch = epoch
                torch.save(model.state_dict(), 'TAHIN'+'_'+args.dataset)
                kill_cnt = 0
                print("saving model...")
            else:
                kill_cnt += 1
                if kill_cnt > args.early_stop:
                    print('early stop.')
                    print("best epoch:{}".format(best_epoch))
                    break

            print("In epoch {}, Train Loss: {:.4f}, Valid Loss: {:.5}\n, Valid ACC: {:.5}".format(epoch, train_loss, validate_loss, validate_acc))

    #test use the best model
    model.eval()
    with torch.no_grad():
        model.load_state_dict(torch.load('TAHIN'+'_'+args.dataset))
        test_loss = []
        test_acc = []
        test_auc = []
        test_f1 = []
        test_logloss = []
        for step, batch in enumerate(test_loader):
            user, item, label = [_.to(device) for _ in batch]
            logits = model.forward(g, user_key, item_key, user, item)

            # compute loss
            loss = criterion(logits, label)
            acc = evaluate_acc(logits.detach().cpu().numpy(), label.detach().cpu().numpy())
            auc = evaluate_auc(logits.detach().cpu().numpy(), label.detach().cpu().numpy())
            f1 = evaluate_f1_score(logits.detach().cpu().numpy(), label.detach().cpu().numpy())
            log_loss = evaluate_logloss(logits.detach().cpu().numpy(), label.detach().cpu().numpy())
            
            test_loss.append(loss)
            test_acc.append(acc)
            test_auc.append(auc)
            test_f1.append(f1)
            test_logloss.append(log_loss)
114
115

        test_loss = torch.stack(test_loss).sum().cpu().item()
KounianhuaDu's avatar
KounianhuaDu committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        test_acc = np.mean(test_acc)
        test_auc = np.mean(test_auc)
        test_f1 = np.mean(test_f1)
        test_logloss = np.mean(test_logloss)
        print("Test Loss: {:.5}\n, Test ACC: {:.5}\n, AUC: {:.5}\n, F1: {:.5}\n, Logloss: {:.5}\n".format(test_loss, test_acc, test_auc, test_f1, test_logloss))
    

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Parser For Arguments', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--dataset', default='movielens', help='Dataset to use, default: movielens')
    parser.add_argument('--path', default='./data', help='Path to save the data')
    parser.add_argument('--model', default='TAHIN', help='Model Name')

    parser.add_argument('--batch', default=128, type=int, help='Batch size')
    parser.add_argument('--gpu', type=int, default='0', help='Set GPU Ids : Eg: For CPU = -1, For Single GPU = 0')
    parser.add_argument('--epochs', type=int, default=500, help='Maximum number of epochs')
    parser.add_argument('--wd', type=float, default=0, help='L2 Regularization for Optimizer')
    parser.add_argument('--lr', type=float, default=0.001, help='Learning Rate')
    parser.add_argument('--num_workers', type=int, default=10, help='Number of processes to construct batches')
    parser.add_argument('--early_stop', default=15, type=int, help='Patience for early stop.')
    
    parser.add_argument('--in_size', default=128, type=int, help='Initial dimension size for entities.')
    parser.add_argument('--out_size', default=128, type=int, help='Output dimension size for entities.')
    
    parser.add_argument('--num_heads', default=1, type=int, help='Number of attention heads')
    parser.add_argument('--dropout', default=0.1, type=float, help='Dropout.')
    
    args = parser.parse_args()

    print(args)

    main(args)
149