train.py 4.51 KB
Newer Older
Aymen Waheb's avatar
Aymen Waheb committed
1
2
3
4
5
6
7
8
9
10
import argparse, time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
import dgl
from appnp import APPNP

11

Aymen Waheb's avatar
Aymen Waheb committed
12
13
14
15
16
17
18
19
20
21
def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

22

Aymen Waheb's avatar
Aymen Waheb committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
    train_mask = torch.ByteTensor(data.train_mask)
    val_mask = torch.ByteTensor(data.val_mask)
    test_mask = torch.ByteTensor(data.test_mask)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
41
42
43
           train_mask.sum().item(),
           val_mask.sum().item(),
           test_mask.sum().item()))
Aymen Waheb's avatar
Aymen Waheb committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()

    # graph preprocess and calculate normalization factor
    g = DGLGraph(data.graph)
    n_edges = g.number_of_edges()
    # add self loop
    g.add_edges(g.nodes(), g.nodes())
    g.set_n_initializer(dgl.init.zero_initializer)
    g.set_e_initializer(dgl.init.zero_initializer)
    # normalization
    degs = g.in_degrees().float()
    norm = torch.pow(degs, -0.5)
    norm[torch.isinf(norm)] = 0
    if cuda:
        norm = norm.cuda()
    g.ndata['norm'] = norm.unsqueeze(1)

    # create APPNP model
    model = APPNP(g,
                  in_feats,
                  args.hidden_sizes,
                  n_classes,
                  F.relu,
77
78
                  args.in_drop,
                  args.edge_drop,
Aymen Waheb's avatar
Aymen Waheb committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
                  args.alpha,
                  args.k)

    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(model, features, labels, val_mask)
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
110
111
              "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                            acc, n_edges / np.mean(dur) / 1000))
Aymen Waheb's avatar
Aymen Waheb committed
112
113
114
115
116
117
118
119
120

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='APPNP')
    register_data_args(parser)
121
122
123
124
    parser.add_argument("--in-drop", type=float, default=0.5,
                        help="input feature dropout")
    parser.add_argument("--edge-drop", type=float, default=0.5,
                        help="edge propagation dropout")
Aymen Waheb's avatar
Aymen Waheb committed
125
    parser.add_argument("--gpu", type=int, default=-1,
126
                        help="gpu")
Aymen Waheb's avatar
Aymen Waheb committed
127
    parser.add_argument("--lr", type=float, default=1e-2,
128
                        help="learning rate")
Aymen Waheb's avatar
Aymen Waheb committed
129
    parser.add_argument("--n-epochs", type=int, default=200,
130
                        help="number of training epochs")
Aymen Waheb's avatar
Aymen Waheb committed
131
    parser.add_argument("--hidden_sizes", type=int, nargs='+', default=[64],
132
                        help="hidden unit sizes for appnp")
Aymen Waheb's avatar
Aymen Waheb committed
133
    parser.add_argument("--k", type=int, default=10,
134
                        help="Number of propagation steps")
Aymen Waheb's avatar
Aymen Waheb committed
135
    parser.add_argument("--alpha", type=float, default=0.1,
136
                        help="Teleport Probability")
Aymen Waheb's avatar
Aymen Waheb committed
137
    parser.add_argument("--weight-decay", type=float, default=5e-4,
138
                        help="Weight for L2 loss")
Aymen Waheb's avatar
Aymen Waheb committed
139
140
141
142
    args = parser.parse_args()
    print(args)

    main(args)