test_nn.py 24.3 KB
Newer Older
1
2
3
4
import torch as th
import networkx as nx
import dgl
import dgl.nn.pytorch as nn
5
import dgl.function as fn
6
import backend as F
7
8
import pytest
from test_utils.graph_cases import get_cases
9
10
from copy import deepcopy

11
12
13
import numpy as np
import scipy as sp

14
15
16
17
18
19
20
def _AXWb(A, X, W, b):
    X = th.matmul(X, W)
    Y = th.matmul(A, X.view(X.shape[0], -1)).view_as(X)
    return Y + b

def test_graph_conv():
    g = dgl.DGLGraph(nx.path_graph(3))
21
22
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
23

24
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
25
    conv = conv.to(ctx)
26
27
    print(conv)
    # test#1: basic
28
    h0 = F.ones((3, 5))
29
    h1 = conv(g, h0)
30
31
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
32
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
33
    # test#2: more-dim
34
    h0 = F.ones((3, 5, 5))
35
    h1 = conv(g, h0)
36
37
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
38
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
39
40

    conv = nn.GraphConv(5, 2)
41
    conv = conv.to(ctx)
42
    # test#3: basic
43
    h0 = F.ones((3, 5))
44
    h1 = conv(g, h0)
45
46
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
47
    # test#4: basic
48
    h0 = F.ones((3, 5, 5))
49
    h1 = conv(g, h0)
50
51
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
52
53

    conv = nn.GraphConv(5, 2)
54
    conv = conv.to(ctx)
55
    # test#3: basic
56
    h0 = F.ones((3, 5))
57
    h1 = conv(g, h0)
58
59
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
60
    # test#4: basic
61
    h0 = F.ones((3, 5, 5))
62
    h1 = conv(g, h0)
63
64
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
65
66
67
68
69

    # test rest_parameters
    old_weight = deepcopy(conv.weight.data)
    conv.reset_parameters()
    new_weight = conv.weight.data
70
    assert not F.allclose(old_weight, new_weight)
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
@pytest.mark.parametrize('g', get_cases(['path', 'bipartite', 'small'], exclude=['zero-degree']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
def test_graph_conv2(g, norm, weight, bias):
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, 2)).to(F.ctx())
    nsrc = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_src_nodes()
    ndst = g.number_of_nodes() if isinstance(g, dgl.DGLGraph) else g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    if weight:
        h = conv(g, h)
    else:
        h = conv(g, h, weight=ext_w)
    assert h.shape == (ndst, 2)

88
89
90
91
92
93
94
95
96
97
98
99
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = th.matmul(A, X1.view(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = th.matmul(A, X2.view(X2.shape[0], -1))
    X2 = X2 * N
    X = th.cat([X, X1, X2], dim=-1)
    Y = th.matmul(X, W.rot90())

    return Y + b

100
def test_tagconv():
101
102
103
104
105
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
    norm = th.pow(g.in_degrees().float(), -0.5)

106
    conv = nn.TAGConv(5, 2, bias=True)
107
    conv = conv.to(ctx)
108
109
110
111
    print(conv)

    # test#1: basic
    h0 = F.ones((3, 5))
112
    h1 = conv(g, h0)
113
114
115
116
117
118
119
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.dim() - 1)
    norm = th.reshape(norm, shp).to(ctx)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.weight, conv.lin.bias))

120
    conv = nn.TAGConv(5, 2)
121
    conv = conv.to(ctx)
122

123
124
    # test#2: basic
    h0 = F.ones((3, 5))
125
    h1 = conv(g, h0)
126
    assert h1.shape[-1] == 2
127

128
    # test reset_parameters
129
130
131
132
133
    old_weight = deepcopy(conv.lin.weight.data)
    conv.reset_parameters()
    new_weight = conv.lin.weight.data
    assert not F.allclose(old_weight, new_weight)

134
def test_set2set():
135
    ctx = F.ctx()
136
137
138
    g = dgl.DGLGraph(nx.path_graph(10))

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
139
    s2s = s2s.to(ctx)
140
141
142
    print(s2s)

    # test#1: basic
143
    h0 = F.randn((g.number_of_nodes(), 5))
144
    h1 = s2s(g, h0)
145
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
146
147
148
149
150

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(11))
    g2 = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g1, g2])
151
    h0 = F.randn((bg.number_of_nodes(), 5))
152
    h1 = s2s(bg, h0)
153
154
155
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.dim() == 2

def test_glob_att_pool():
156
    ctx = F.ctx()
157
158
159
    g = dgl.DGLGraph(nx.path_graph(10))

    gap = nn.GlobalAttentionPooling(th.nn.Linear(5, 1), th.nn.Linear(5, 10))
160
    gap = gap.to(ctx)
161
162
163
    print(gap)

    # test#1: basic
164
    h0 = F.randn((g.number_of_nodes(), 5))
165
    h1 = gap(g, h0)
166
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
167
168
169

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
170
    h0 = F.randn((bg.number_of_nodes(), 5))
171
    h1 = gap(bg, h0)
172
173
174
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.dim() == 2

def test_simple_pool():
175
    ctx = F.ctx()
176
177
178
179
180
181
182
183
184
    g = dgl.DGLGraph(nx.path_graph(15))

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
185
    h0 = F.randn((g.number_of_nodes(), 5))
186
187
188
189
    sum_pool = sum_pool.to(ctx)
    avg_pool = avg_pool.to(ctx)
    max_pool = max_pool.to(ctx)
    sort_pool = sort_pool.to(ctx)
190
    h1 = sum_pool(g, h0)
191
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
192
    h1 = avg_pool(g, h0)
193
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
194
    h1 = max_pool(g, h0)
195
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
196
    h1 = sort_pool(g, h0)
197
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.dim() == 2
198
199
200
201

    # test#2: batched graph
    g_ = dgl.DGLGraph(nx.path_graph(5))
    bg = dgl.batch([g, g_, g, g_, g])
202
    h0 = F.randn((bg.number_of_nodes(), 5))
203
    h1 = sum_pool(bg, h0)
204
205
206
207
208
209
    truth = th.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
210

211
    h1 = avg_pool(bg, h0)
212
213
214
215
216
217
    truth = th.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
218

219
    h1 = max_pool(bg, h0)
220
221
222
223
224
225
    truth = th.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
226

227
    h1 = sort_pool(bg, h0)
228
229
230
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.dim() == 2

def test_set_trans():
231
    ctx = F.ctx()
232
233
234
235
236
    g = dgl.DGLGraph(nx.path_graph(15))

    st_enc_0 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'sab')
    st_enc_1 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'isab', 3)
    st_dec = nn.SetTransformerDecoder(50, 5, 10, 100, 2, 4)
237
238
239
    st_enc_0 = st_enc_0.to(ctx)
    st_enc_1 = st_enc_1.to(ctx)
    st_dec = st_dec.to(ctx)
240
241
242
    print(st_enc_0, st_enc_1, st_dec)

    # test#1: basic
243
    h0 = F.randn((g.number_of_nodes(), 50))
244
    h1 = st_enc_0(g, h0)
245
    assert h1.shape == h0.shape
246
    h1 = st_enc_1(g, h0)
247
    assert h1.shape == h0.shape
248
    h2 = st_dec(g, h1)
249
    assert h2.shape[0] == 1 and h2.shape[1] == 200 and h2.dim() == 2
250
251
252
253
254

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g, g1, g2])
255
    h0 = F.randn((bg.number_of_nodes(), 50))
256
    h1 = st_enc_0(bg, h0)
257
    assert h1.shape == h0.shape
258
    h1 = st_enc_1(bg, h0)
259
260
    assert h1.shape == h0.shape

261
    h2 = st_dec(bg, h1)
262
263
    assert h2.shape[0] == 3 and h2.shape[1] == 200 and h2.dim() == 2

264
265
266
267
268
269
def uniform_attention(g, shape):
    a = th.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / g.in_degrees(g.edges()[1]).view(target_shape).float()

def test_edge_softmax():
270
271
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
272
    edata = F.ones((g.number_of_edges(), 1))
273
    a = nn.edge_softmax(g, edata)
274
275
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
276
    assert F.allclose(a, uniform_attention(g, a.shape))
277

278
    # Test higher dimension case
279
    edata = F.ones((g.number_of_edges(), 3, 1))
280
    a = nn.edge_softmax(g, edata)
281
282
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
283
    assert F.allclose(a, uniform_attention(g, a.shape))
284

285
286
287
288
289
290
291
292
    # Test both forward and backward with PyTorch built-in softmax.
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

293
    score = F.randn((900, 1))
294
    score.requires_grad_()
295
296
    grad = F.randn((900, 1))
    y = F.softmax(score.view(30, 30), dim=0).view(-1, 1)
297
298
299
300
    y.backward(grad)
    grad_score = score.grad
    score.grad.zero_()
    y_dgl = nn.edge_softmax(g, score)
301
302
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
303
    # check forward
304
    assert F.allclose(y_dgl, y)
305
306
    y_dgl.backward(grad)
    # checkout gradient
307
    assert F.allclose(score.grad, grad_score)
308
309
310
    print(score.grad[:10], grad_score[:10])
    
    # Test 2
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def generate_rand_graph(n, m=None, ctor=dgl.DGLGraph):
        if m is None:
            m = n
        arr = (sp.sparse.random(m, n, density=0.1, format='coo') != 0).astype(np.int64)
        return ctor(arr, readonly=True)

    for g in [generate_rand_graph(50),
              generate_rand_graph(50, ctor=dgl.graph),
              generate_rand_graph(100, 50, ctor=dgl.bipartite)]:
        a1 = F.randn((g.number_of_edges(), 1)).requires_grad_()
        a2 = a1.clone().detach().requires_grad_()
        g.edata['s'] = a1
        g.group_apply_edges('dst', lambda edges: {'ss':F.softmax(edges.data['s'], 1)})
        g.edata['ss'].sum().backward()
        
        builtin_sm = nn.edge_softmax(g, a2)
        builtin_sm.sum().backward()
        print(a1.grad - a2.grad)
        assert len(g.srcdata) == 0
        assert len(g.dstdata) == 0
        assert len(g.edata) == 2
        assert F.allclose(a1.grad, a2.grad, rtol=1e-4, atol=1e-4) # Follow tolerance in unittest backend
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

def test_partial_edge_softmax():
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    score.requires_grad_()
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
    eids = F.zerocopy_from_numpy(eids)
    # compute partial edge softmax
    y_1 = nn.edge_softmax(g, score, eids)
    y_1.backward(grad)
    grad_1 = score.grad
    score.grad.zero_()
    # compute edge softmax on edge subgraph
    subg = g.edge_subgraph(eids)
    y_2 = nn.edge_softmax(subg, score)
    y_2.backward(grad)
    grad_2 = score.grad
    score.grad.zero_()

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)

Minjie Wang's avatar
Minjie Wang committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
def test_rgcn():
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_bdd(g, h, r)
    assert list(h_new.shape) == [100, O]

    # with norm
    norm = th.zeros((g.number_of_edges(), 1)).to(ctx)

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_bdd(g, h, r, norm)
    assert list(h_new.shape) == [100, O]

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
    h = th.randint(0, I, (100,)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r)
    assert list(h_new.shape) == [100, O]
408

409
410
411
412
413
def test_gat_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    gat = nn.GATConv(5, 2, 4)
    feat = F.randn((100, 5))
414
    gat = gat.to(ctx)
415
    h = gat(g, feat)
416
417
418
419
420
421
422
423
    assert h.shape[-1] == 2 and h.shape[-2] == 4

def test_sage_conv():
    for aggre_type in ['mean', 'pool', 'gcn', 'lstm']:
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
        sage = nn.SAGEConv(5, 10, aggre_type)
        feat = F.randn((100, 5))
424
        sage = sage.to(ctx)
425
        h = sage(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
426
427
428
429
430
431
432
        assert h.shape[-1] == 10

        g = dgl.graph(sp.sparse.random(100, 100, density=0.1))
        sage = nn.SAGEConv(5, 10, aggre_type)
        feat = F.randn((100, 5))
        sage = sage.to(ctx)
        h = sage(g, feat)
433
434
        assert h.shape[-1] == 10

435
436
437
438
439
440
441
442
443
        g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
        dst_dim = 5 if aggre_type != 'gcn' else 10
        sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
        feat = (F.randn((100, 10)), F.randn((200, dst_dim)))
        sage = sage.to(ctx)
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 200

444
445
446
447
448
449
def test_sgc_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    # not cached
    sgc = nn.SGConv(5, 10, 3)
    feat = F.randn((100, 5))
450
    sgc = sgc.to(ctx)
451

452
    h = sgc(g, feat)
453
454
455
456
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
457
    sgc = sgc.to(ctx)
458
459
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
460
461
462
463
464
465
466
467
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10

def test_appnp_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    appnp = nn.APPNPConv(10, 0.1)
    feat = F.randn((100, 5))
468
    appnp = appnp.to(ctx)
469

470
    h = appnp(g, feat)
471
472
473
474
475
476
477
478
479
480
481
    assert h.shape[-1] == 5

def test_gin_conv():
    for aggregator_type in ['mean', 'max', 'sum']:
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
        gin = nn.GINConv(
            th.nn.Linear(5, 12),
            aggregator_type
        )
        feat = F.randn((100, 5))
482
        gin = gin.to(ctx)
483
        h = gin(g, feat)
484
485
486
487
488
489
490
        assert h.shape[-1] == 12

def test_agnn_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    agnn = nn.AGNNConv(1)
    feat = F.randn((100, 5))
491
    agnn = agnn.to(ctx)
492
    h = agnn(g, feat)
493
494
495
496
497
498
499
500
    assert h.shape[-1] == 5

def test_gated_graph_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    ggconv = nn.GatedGraphConv(5, 10, 5, 3)
    etypes = th.arange(g.number_of_edges()) % 3
    feat = F.randn((100, 5))
501
502
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)
503

504
    h = ggconv(g, feat, etypes)
505
506
507
508
509
510
511
512
513
514
    # current we only do shape check
    assert h.shape[-1] == 10

def test_nn_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
    feat = F.randn((100, 5))
    efeat = F.randn((g.number_of_edges(), 4))
515
    nnconv = nnconv.to(ctx)
516
    h = nnconv(g, feat, efeat)
517
518
519
520
521
522
523
524
525
    # currently we only do shape check
    assert h.shape[-1] == 10

def test_gmm_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    gmmconv = nn.GMMConv(5, 10, 3, 4, 'mean')
    feat = F.randn((100, 5))
    pseudo = F.randn((g.number_of_edges(), 3))
526
    gmmconv = gmmconv.to(ctx)
527
    h = gmmconv(g, feat, pseudo)
528
529
530
531
532
533
534
    # currently we only do shape check
    assert h.shape[-1] == 10

def test_dense_graph_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    adj = g.adjacency_matrix(ctx=ctx).to_dense()
535
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
536
537
538
539
    dense_conv = nn.DenseGraphConv(5, 2, norm=False, bias=True)
    dense_conv.weight.data = conv.weight.data
    dense_conv.bias.data = conv.bias.data
    feat = F.randn((100, 5))
540
541
    conv = conv.to(ctx)
    dense_conv = dense_conv.to(ctx)
542
543
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
544
545
546
547
548
549
    assert F.allclose(out_conv, out_dense_conv)

def test_dense_sage_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    adj = g.adjacency_matrix(ctx=ctx).to_dense()
550
    sage = nn.SAGEConv(5, 2, 'gcn')
551
552
553
554
    dense_sage = nn.DenseSAGEConv(5, 2)
    dense_sage.fc.weight.data = sage.fc_neigh.weight.data
    dense_sage.fc.bias.data = sage.fc_neigh.bias.data
    feat = F.randn((100, 5))
555
556
    sage = sage.to(ctx)
    dense_sage = dense_sage.to(ctx)
557
558
    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    assert F.allclose(out_sage, out_dense_sage)

def test_dense_cheb_conv():
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
        adj = g.adjacency_matrix(ctx=ctx).to_dense()
        cheb = nn.ChebConv(5, 2, k)
        dense_cheb = nn.DenseChebConv(5, 2, k)
        for i in range(len(cheb.fc)):
            dense_cheb.W.data[i] = cheb.fc[i].weight.data.t()
        if cheb.bias is not None:
            dense_cheb.bias.data = cheb.bias.data
        feat = F.randn((100, 5))
573
574
        cheb = cheb.to(ctx)
        dense_cheb = dense_cheb.to(ctx)
575
576
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
577
578
        assert F.allclose(out_cheb, out_dense_cheb)

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
def test_sequential():
    ctx = F.ctx()
    # Test single graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    net = net.to(ctx)
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # Test multiple graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.view(graph.number_of_nodes() // 2, 2, -1).sum(1)

    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05))
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2))
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8))
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    net = net.to(ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
def test_atomic_conv():
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    aconv = nn.AtomicConv(interaction_cutoffs=F.tensor([12.0, 12.0]),
                          rbf_kernel_means=F.tensor([0.0, 2.0]),
                          rbf_kernel_scaling=F.tensor([4.0, 4.0]),
                          features_to_use=F.tensor([6.0, 8.0]))

    ctx = F.ctx()
    if F.gpu_ctx():
        aconv = aconv.to(ctx)

    feat = F.randn((100, 1))
    dist = F.randn((g.number_of_edges(), 1))

    h = aconv(g, feat, dist)
    # current we only do shape check
    assert h.shape[-1] == 4

def test_cf_conv():
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
    cfconv = nn.CFConv(node_in_feats=2,
                       edge_in_feats=3,
                       hidden_feats=2,
                       out_feats=3)

    ctx = F.ctx()
    if F.gpu_ctx():
        cfconv = cfconv.to(ctx)

    node_feats = F.randn((100, 2))
    edge_feats = F.randn((g.number_of_edges(), 3))
    h = cfconv(g, node_feats, edge_feats)
    # current we only do shape check
    assert h.shape[-1] == 3    

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
def test_hetero_conv(agg):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]})
    conv = nn.HeteroGraphConv({
        'follows': nn.GraphConv(2, 3),
        'plays': nn.GraphConv(2, 4),
        'sells': nn.GraphConv(3, 4)},
        agg)
    if F.gpu_ctx():
        conv = conv.to(F.ctx())
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)
    if F.gpu_ctx():
        conv = conv.to(F.ctx())

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(th.nn.Module):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def forward(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return th.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
    if F.gpu_ctx():
        conv = conv.to(F.ctx())
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

772
773
774
if __name__ == '__main__':
    test_graph_conv()
    test_edge_softmax()
775
    test_partial_edge_softmax()
776
777
778
779
    test_set2set()
    test_glob_att_pool()
    test_simple_pool()
    test_set_trans()
Minjie Wang's avatar
Minjie Wang committed
780
    test_rgcn()
781
782
783
784
785
786
787
788
789
790
791
792
793
    test_tagconv()
    test_gat_conv()
    test_sage_conv()
    test_sgc_conv()
    test_appnp_conv()
    test_gin_conv()
    test_agnn_conv()
    test_gated_graph_conv()
    test_nn_conv()
    test_gmm_conv()
    test_dense_graph_conv()
    test_dense_sage_conv()
    test_dense_cheb_conv()
794
    test_sequential()
795
796
    test_atomic_conv()
    test_cf_conv()