"vscode:/vscode.git/clone" did not exist on "0d2a151ec81344e81fd345f3e53edd65ff856d5b"
model.py 6.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""RGCN layer implementation"""
from collections import defaultdict

import torch as th
import torch.nn as nn
import torch.nn.functional as F

import dgl.nn.pytorch as dglnn

class RelGraphConvLayer(nn.Module):
    r"""Relational graph convolution layer.

    Parameters
    ----------
    in_feat : int
        Input feature size.
    out_feat : int
        Output feature size.
    rel_names : list[str]
        Relation names.
    num_bases : int, optional
        Number of bases. If is none, use number of relations. Default: None.
    weight : bool, optional
        True if a linear layer is applied after message passing. Default: True
    bias : bool, optional
        True if bias is added. Default: True
    activation : callable, optional
        Activation function. Default: None
    self_loop : bool, optional
        True to include self loop message. Default: False
    dropout : float, optional
        Dropout rate. Default: 0.0
    """
    def __init__(self,
                 in_feat,
                 out_feat,
                 rel_names,
                 num_bases,
                 *,
                 weight=True,
                 bias=True,
                 activation=None,
                 self_loop=False,
                 dropout=0.0):
        super(RelGraphConvLayer, self).__init__()
        self.in_feat = in_feat
        self.out_feat = out_feat
        self.rel_names = rel_names
        self.num_bases = num_bases
        self.bias = bias
        self.activation = activation
        self.self_loop = self_loop

        self.conv = dglnn.HeteroGraphConv({
                rel : dglnn.GraphConv(in_feat, out_feat, norm='right', weight=False, bias=False)
                for rel in rel_names
            })

        self.use_weight = weight
        self.use_basis = num_bases < len(self.rel_names) and weight
        if self.use_weight:
            if self.use_basis:
                self.basis = dglnn.WeightBasis((in_feat, out_feat), num_bases, len(self.rel_names))
            else:
                self.weight = nn.Parameter(th.Tensor(len(self.rel_names), in_feat, out_feat))
                nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu'))

        # bias
        if bias:
            self.h_bias = nn.Parameter(th.Tensor(out_feat))
            nn.init.zeros_(self.h_bias)

        # weight for self loop
        if self.self_loop:
            self.loop_weight = nn.Parameter(th.Tensor(in_feat, out_feat))
            nn.init.xavier_uniform_(self.loop_weight,
                                    gain=nn.init.calculate_gain('relu'))

        self.dropout = nn.Dropout(dropout)

    def forward(self, g, inputs):
        """Forward computation

        Parameters
        ----------
        g : DGLHeteroGraph
            Input graph.
        inputs : dict[str, torch.Tensor]
            Node feature for each node type.

        Returns
        -------
        dict[str, torch.Tensor]
            New node features for each node type.
        """
        g = g.local_var()
        if self.use_weight:
            weight = self.basis() if self.use_basis else self.weight
            wdict = {self.rel_names[i] : {'weight' : w.squeeze(0)}
                     for i, w in enumerate(th.split(weight, 1, dim=0))}
        else:
            wdict = {}
        hs = self.conv(g, inputs, mod_kwargs=wdict)
        def _apply(ntype, h):
            if self.self_loop:
                h = h + th.matmul(inputs[ntype], self.loop_weight)
            if self.bias:
                h = h + self.h_bias
            if self.activation:
                h = self.activation(h)
            return self.dropout(h)
        return {ntype : _apply(ntype, h) for ntype, h in hs.items()}

class RelGraphEmbed(nn.Module):
    r"""Embedding layer for featureless heterograph."""
    def __init__(self,
                 g,
                 embed_size,
                 embed_name='embed',
                 activation=None,
                 dropout=0.0):
        super(RelGraphEmbed, self).__init__()
        self.g = g
        self.embed_size = embed_size
        self.embed_name = embed_name
        self.activation = activation
        self.dropout = nn.Dropout(dropout)

        # create weight embeddings for each node for each relation
        self.embeds = nn.ParameterDict()
        for ntype in g.ntypes:
            embed = nn.Parameter(th.Tensor(g.number_of_nodes(ntype), self.embed_size))
            nn.init.xavier_uniform_(embed, gain=nn.init.calculate_gain('relu'))
            self.embeds[ntype] = embed

    def forward(self, block=None):
        """Forward computation

        Parameters
        ----------
        block : DGLHeteroGraph, optional
            If not specified, directly return the full graph with embeddings stored in
            :attr:`embed_name`. Otherwise, extract and store the embeddings to the block
            graph and return.

        Returns
        -------
        DGLHeteroGraph
            The block graph fed with embeddings.
        """
        return self.embeds

class EntityClassify(nn.Module):
    def __init__(self,
                 g,
                 h_dim, out_dim,
                 num_bases,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False):
        super(EntityClassify, self).__init__()
        self.g = g
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.rel_names = list(set(g.etypes))
        self.rel_names.sort()
        if num_bases < 0 or num_bases > len(self.rel_names):
            self.num_bases = len(self.rel_names)
        else:
            self.num_bases = num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop

        self.embed_layer = RelGraphEmbed(g, self.h_dim)
        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(RelGraphConvLayer(
            self.h_dim, self.h_dim, self.rel_names,
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
            dropout=self.dropout, weight=False))
        # h2h
        for i in range(self.num_hidden_layers):
            self.layers.append(RelGraphConvLayer(
                self.h_dim, self.h_dim, self.rel_names,
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout))
        # h2o
        self.layers.append(RelGraphConvLayer(
            self.h_dim, self.out_dim, self.rel_names,
            self.num_bases, activation=None,
            self_loop=self.use_self_loop))

    def forward(self, h=None, blocks=None):
        if blocks is None:
            # full graph training
            blocks = [self.g] * len(self.layers)
        if h is None:
            # full graph training
            h = self.embed_layer()
        for layer, block in zip(self.layers, blocks):
            h = layer(block, h)
        return h