1_basics.py 17.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
"""
.. currentmodule:: dgl

Working with Heterogeneous Graphs in DGL
========================================

**Author**: Quan Gan, `Minjie Wang <https://jermainewang.github.io/>`_, Mufei Li,
George Karypis, Zheng Zhang

Heterogeneous graphs, or **heterographs** for short, are graphs that contain
different types of nodes and edges. The different types of nodes and edges tend
to have different types of attributes that are designed to capture the
characteristics of each node and edge type. Moreoever, within the context of
graph neural networks, depending on their complexity, certain node and edge types
may need to be modeled with representations that have different number of dimensions.

DGL supports graph neural network computations on such heterogeneous graphs, by
using the heterograph class and its associated API.

In this tutorial, you will learn:

* Examples of heterogenous graph data and what are the typical applications?

* Create and manipulate a heterograph in DGL.

* Implement `Relational-GCN <https://arxiv.org/abs/1703.06103>`_, a popular GNN model,
  for heterograph input.

* Train the model to solve a node classification task.
"""

###############################################################################
# Examples of Heterograph
# -----------------------
# Many real-world graph data represent relations among various types of entities.
# In this section, we give several real-world cases that can have their data
# represented as heterographs.
#
# **Citation graph** The `ACM dataset <https://aminer.org/citation>`_ contains two
# million papers, with their authors, publication venues and the other papers
# they cited. This information can be represented as a heterogeneous graph.
#
# Figure 1 depicts several entities in this dataset and the relations among them.
# This graph has three types of entities corresponding to
#
# * Papers,
#
# * Authors, and
#
# * Publication venues
#
# It also contain three types of edges connecting
#
# * Authors with papers corresponding to *written-by* relations,
#
# * Papers with publication venues corresponding to *published-in* relations, and
#
# * Papers with other papers corresponding to *cited-by* relations.
#
# .. figure:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/hetero/acm-example.png
#
#    Figure 1.  A heterograph modeling of some of the entities and relations in
#    the ACM dataset (taken from `Shi et al., 2015 <https://arxiv.org/pdf/1511.04854.pdf>`_).
#
# **Recommender systems** The datasets used in recommender systems often contain
# interactions between users and items, such as those corresponding to the
# ratings that users have provided to movies.  Such interactions also be modeled
# via heterographs.
#
# The nodes in those heterographs will have two types: *users* and *movies*.  The edges
# will correspond to the user-movie interactions. Furthermore, if an interaction is
# marked with a rating, then each rating value could correspond to a different edge type.
# Figure 2 shows an example.
#
# .. figure:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/hetero/recsys-example.png
#
#    Figure 2. User-item interactions modeled as a heterograph.
#
# **Knowledge graph** Knowledge graphs are inherently heterogenous. For example in
# Wikidata, Barack Obama (item Q76) is an instance of human, which could be viewed as
# the entity class, whose spouse (item P26) is Michelle Obama (item Q13133) and
# occupation (item P106) is politician (item Q82955). The relations are shown in Figure 3.
#
# .. figure:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/hetero/kg-example.png
#
#    Figure 3. Wikidata knowledge graph.

###############################################################################
# Creating a heterograph in DGL
# -----------------------------
# One can create a heterograph in DGL using the :func:`dgl.heterograph` API.
# The argument to :func:`dgl.heterograph` is a dictionary. The keys are tuples
# in the form of ``(srctype, edgetype, dsttype)`` specifying the relation name
# and the two entity types it connects.  We call such tuples *canonical edge
# types*. The values are data to initialize the graph structures, i.e. which
# nodes the edges actually connect.
#
# For instance, The following code creates the user-movie rating graph in
# Figure 2.

# Each value of the dictionary is a list of edge tuples.
# Nodes are integer IDs starting from zero. Nodes IDs of different types have
# separate countings.
import dgl

ratings = dgl.heterograph(
    {('user', '+1', 'movie') : [(0, 0), (0, 1), (1, 0)],
     ('user', '-1', 'movie') : [(2, 1)]})

###############################################################################
# DGL supports creating a graph from a variety of data sources:

# the following codes create the same graph as the above

# creating from scipy matrix
import scipy.sparse as sp
plus1 = sp.coo_matrix(([1, 1, 1], ([0, 0, 1], [0, 1, 0])), shape=(3, 2))
minus1 = sp.coo_matrix(([1], ([2], [1])), shape=(3, 2))
ratings = dgl.heterograph(
    {('user', '+1', 'movie') : plus1,
     ('user', '-1', 'movie') : minus1})

# creating from networkx graph
import networkx as nx
plus1 = nx.DiGraph()
plus1.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
plus1.add_nodes_from(['m0', 'm1'], bipartite=1)
plus1.add_edges_from([('u0', 'm0'), ('u0', 'm1'), ('u1', 'm0')])
# To simplify the example, we reuse the minus1 object.
# This also means that you could use different sources of graph data
# for different relations.
ratings = dgl.heterograph(
    {('user', '+1', 'movie') : plus1,
     ('user', '-1', 'movie') : minus1})

# creating from edge indices
ratings = dgl.heterograph(
    {('user', '+1', 'movie') : ([0, 0, 1], [0, 1, 0]),
     ('user', '-1', 'movie') : ([2], [1])})

###############################################################################
# Manipulating heterograph
# ------------------------
# Let us create a more realistic heterograph using the ACM dataset. First we
# need to download the dataset as follows:

import scipy.io
import urllib.request

data_url = 'https://s3.us-east-2.amazonaws.com/dgl.ai/dataset/ACM.mat'
data_file_path = '/tmp/ACM.mat'

urllib.request.urlretrieve(data_url, data_file_path)
data = scipy.io.loadmat(data_file_path)
print(list(data.keys()))

###############################################################################
# The dataset stores node information by their types: ``P`` for paper, ``A``
# for author, ``C`` for conference, ``L`` for subject code, etc. The relations
# are stored as scipy sparse matrix under key ``XvsY``, where ``X`` and ``Y``
# could be any of the node type codes.
#
# The following codes print out some statistics about the paper-author relation.

print(type(data['PvsA']))
print('#Papers:', data['PvsA'].shape[0])
print('#Authors:', data['PvsA'].shape[1])
print('#Links:', data['PvsA'].nnz)

###############################################################################
# Converting this scipy matrix to a heterograph in DGL is straightforward:

pa_g = dgl.heterograph({('paper', 'written-by', 'author') : data['PvsA']})
# equivalent (shorter) API for creating heterograph with two node types:
pa_g = dgl.bipartite(data['PvsA'], 'paper', 'written-by', 'author')

###############################################################################
# We can easily print out the type names and other structural information.

print('Node types:', pa_g.ntypes)
print('Edge types:', pa_g.etypes)
print('Canonical edge types:', pa_g.canonical_etypes)

# Nodes/edges are assigned integer IDs starting from zero and each type has its own counting.
# To distinguish the nodes/edges of different types, specify the type name as the argument.
print(pa_g.number_of_nodes('paper'))
# Canonical edge type name can be shortened to only one edge type name if it is
# uniquely distinguishable.
print(pa_g.number_of_edges(('paper', 'written-by', 'author')))
print(pa_g.number_of_edges('written-by'))
print(pa_g.successors(1, etype='written-by'))  # get the authors that write paper #1

# Type name argument could be omitted whenever the behavior is unambiguous.
print(pa_g.number_of_edges())  # only one edge type, the edge type argument could be omitted

###############################################################################
# Homogeneous graph is just a special case of a heterograph with only one type
# of nodes and edges. In this case, all the APIs are exactly the same as in
# :class:`DGLGraph`.

# paper-citing-paper graph is a homogeneous graph
pp_g = dgl.heterograph({('paper', 'citing', 'paper') : data['PvsP']})
# equivalent (shorter) API for creating homogeneous graph
pp_g = dgl.graph(data['PvsP'], 'paper', 'cite')

# All the ntype and etype argument could be omitted because the behavior is unambiguous.
print(pp_g.number_of_nodes())
print(pp_g.number_of_edges())
print(pp_g.successors(3))

###############################################################################
# We then create a subset of the ACM graph using the paper-author, paper-paper
# and paper-subject relations.  Meanwhile, we should also add the reverse
# relations to prepare for the later sections.

G = dgl.heterograph({
        ('paper', 'written-by', 'author') : data['PvsA'],
        ('author', 'writing', 'paper') : data['PvsA'].transpose(),
        ('paper', 'citing', 'paper') : data['PvsP'],
        ('paper', 'cited', 'paper') : data['PvsP'].transpose(),
        ('paper', 'is-about', 'subject') : data['PvsL'],
        ('subject', 'has', 'paper') : data['PvsL'].transpose(),
    })

print(G)

###############################################################################
# **Metagraph** (or network schema) is a useful summary of a heterograph.
# Serving as a template for a heterograph, it tells how many types of objects
# exist in the network and where the possible links exist.
#
# DGL provides easy access to the metagraph, which could be visualized using
# external tools:

# draw the metagraph using graphviz
import pygraphviz as pgv
def plot_graph(nxg):
    ag = pgv.AGraph(strict=False, directed=True)
    for u, v, k in nxg.edges(keys=True):
        ag.add_edge(u, v, label=k)
    ag.layout('dot')
    ag.draw('graph.png')

plot_graph(G.metagraph)

###############################################################################
# Learning tasks associated with heterographs
# -------------------------------------------
# Some of the typical learning tasks that involve heterographs include:
#
# * *Node classification/regression*, to predict the class of each node or
#   estimate a value associated with it.
#
# * *Link prediction*: The task is to predict if there is an edge of a certain
#   type between a pair of nodes, or predict which other nodes a particular
#   node is connected with (and optionally the edge types of such connections).
#
# * *Graph classification/regression*: The task is to assign an entire
#   heterograph into one of the target classes or to estimate a numerical
#   value associated with it.
#
# In this tutorial, we designed a simple example for the first task.
#
# A semi-supervised node classification example
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Our goal is to predict the publishing conference of a paper using the ACM
# academic graph we just created. To further simplify the task, we only focus
# on papers published in three conferences: *KDD*, *ICML*, and *VLDB*. All
# the other papers are not labeled, making it a semi-supervised setting.
#
# The following codes extract those papers from the raw dataset and prepare
# the training/validation/testing split.

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

pvc = data['PvsC'].tocsr()
# find all papers published in KDD, ICML, VLDB
c_selected = [0, 11, 13]  # KDD, ICML, VLDB
p_selected = pvc[:, c_selected].tocoo()
# generate labels
labels = pvc.indices
labels[labels == 11] = 1
labels[labels == 13] = 2
labels = torch.tensor(labels).long()

# generate train/val/test split
pid = p_selected.row
shuffle = np.random.permutation(pid)
train_idx = torch.tensor(shuffle[0:800]).long()
val_idx = torch.tensor(shuffle[800:900]).long()
test_idx = torch.tensor(shuffle[900:]).long()

###############################################################################
# Relational-GCN on heterograph
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# We use `Relational-GCN <https://arxiv.org/abs/1703.06103>`_ to learn the
# representation of nodes in the graph. Its message passing equation is as
# follows:
#
# .. math::
#
#    h_i^{(l+1)} = \sigma\left(\sum_{r\in \mathcal{R}}
#    \sum_{j\in\mathcal{N}_r(i)}W_r^{(l)}h_j^{(l)}\right)
#
# Breaking down the equation, we see that there are two parts in the
# computation:
#
# (i) message computation and aggregation within each relation :math:`r`, and
#
# (ii) reduction that merges the results from multiple relations.
#
# Following this intuition, we perform message passing on a heterograph in
# two steps:
#
# (i) per-edge-type message passing, and
#
# (ii) type wise reduction:

import dgl.function as fn

class HeteroRGCNLayer(nn.Module):
    def __init__(self, in_size, out_size, etypes):
        super(HeteroRGCNLayer, self).__init__()
        # W_r for each relation
        self.weight = nn.ModuleDict({
                name : nn.Linear(in_size, out_size) for name in etypes
            })

    def forward(self, G, feat_dict):
        # The input is a dictionary of node features for each type
        funcs = {}
        for srctype, etype, dsttype in G.canonical_etypes:
            # Compute W_r * h
            Wh = self.weight[etype](feat_dict[srctype])
            # Save it in graph for message passing
            G.nodes[srctype].data['Wh_%s' % etype] = Wh
            # Specify per-relation message passing functions: (message_func, reduce_func).
            # Note that the results are saved to the same destination feature 'h', which
            # hints the type wise reducer for aggregation.
            funcs[etype] = (fn.copy_u('Wh_%s' % etype, 'm'), fn.mean('m', 'h'))
        # Trigger message passing of multiple types.
        # The first argument is the message passing functions for each relation.
        # The second one is the type wise reducer, could be "sum", "max",
        # "min", "mean", "stack"
        G.multi_update_all(funcs, 'sum')
        # return the updated node feature dictionary
        return {ntype : G.nodes[ntype].data['h'] for ntype in G.ntypes}

###############################################################################
# We then create a simple GNN by stacking two ``HeteroRGCNLayer``. Since the
# nodes do not have input features, we simply make their embeddings trainable.

class HeteroRGCN(nn.Module):
    def __init__(self, G, in_size, hidden_size, out_size):
        super(HeteroRGCN, self).__init__()
        # Use trainable node embeddings as featureless inputs.
        embed_dict = {ntype : nn.Parameter(torch.Tensor(G.number_of_nodes(ntype), in_size))
                      for ntype in G.ntypes}
        for key, embed in embed_dict.items():
            nn.init.xavier_uniform_(embed)
        self.embed = nn.ParameterDict(embed_dict)
        # create layers
        self.layer1 = HeteroRGCNLayer(in_size, hidden_size, G.etypes)
        self.layer2 = HeteroRGCNLayer(hidden_size, out_size, G.etypes)

    def forward(self, G):
        h_dict = self.layer1(G, self.embed)
        h_dict = {k : F.leaky_relu(h) for k, h in h_dict.items()}
        h_dict = self.layer2(G, h_dict)
        # get paper logits
        return h_dict['paper']

###############################################################################
# Train and evaluate
# ~~~~~~~~~~~~~~~~~~
# We then train and evaluate this network.

# Create the model. The output has 3 logits for 3 classes.
model = HeteroRGCN(G, 10, 10, 3)

opt = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

best_val_acc = 0
best_test_acc = 0

for epoch in range(100):
    logits = model(G)
    # The loss is computed only for labeled nodes.
    loss = F.cross_entropy(logits[train_idx], labels[train_idx])

    pred = logits.argmax(1)
    train_acc = (pred[train_idx] == labels[train_idx]).float().mean()
    val_acc = (pred[val_idx] == labels[val_idx]).float().mean()
    test_acc = (pred[test_idx] == labels[test_idx]).float().mean()

    if best_val_acc < val_acc:
        best_val_acc = val_acc
        best_test_acc = test_acc

    opt.zero_grad()
    loss.backward()
    opt.step()

    if epoch % 5 == 0:
        print('Loss %.4f, Train Acc %.4f, Val Acc %.4f (Best %.4f), Test Acc %.4f (Best %.4f)' % (
            loss.item(),
            train_acc.item(),
            val_acc.item(),
            best_val_acc.item(),
            test_acc.item(),
            best_test_acc.item(),
        ))

###############################################################################
# What's next?
# ------------
# * Check out our full implementation in PyTorch
#   `here <https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn-hetero>`_.
#
# * We also provide the following model examples:
#
#   * `Graph Convolutional Matrix Completion <https://arxiv.org/abs/1706.02263>_`,
#     which we implement in MXNet
#     `here <https://github.com/dmlc/dgl/tree/v0.4.0/examples/mxnet/gcmc>`_.
#
#   * `Heterogeneous Graph Attention Network <https://arxiv.org/abs/1903.07293>`_
#     requires transforming a heterograph into a homogeneous graph according to
#     a given metapath (i.e. a path template consisting of edge types).  We
#     provide :func:`dgl.transform.metapath_reachable_graph` to do this.  See full
#     implementation
#     `here <https://github.com/dmlc/dgl/tree/master/examples/pytorch/han>`_.
#
#   * `Metapath2vec <https://dl.acm.org/citation.cfm?id=3098036>`_ requires
#     generating random walk paths according to a given metapath.  Please
#     refer to the full metapath2vec implementation
#     `here <https://github.com/dmlc/dgl/tree/master/examples/pytorch/metapath2vec>`_.
#
# * :doc:`Full heterograph API reference <../../api/python/heterograph>`.